1,100 research outputs found

    An analysis of polynomial chaos approximations for modeling single-fluid-phase flow in porous medium systems

    Get PDF
    We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwater flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems. We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the methods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity provides a significant impediment to efficient approximations for large domains for all methods considered in this work, other than the Monte Carlo method

    Uncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins

    Get PDF
    In this work we propose an Uncertainty Quantification methodology for sedimentary basins evolution under mechanical and geochemical compaction processes, which we model as a coupled, time-dependent, non-linear, monodimensional (depth-only) system of PDEs with uncertain parameters. While in previous works (Formaggia et al. 2013, Porta et al., 2014) we assumed a simplified depositional history with only one material, in this work we consider multi-layered basins, in which each layer is characterized by a different material, and hence by different properties. This setting requires several improvements with respect to our earlier works, both concerning the deterministic solver and the stochastic discretization. On the deterministic side, we replace the previous fixed-point iterative solver with a more efficient Newton solver at each step of the time-discretization. On the stochastic side, the multi-layered structure gives rise to discontinuities in the dependence of the state variables on the uncertain parameters, that need an appropriate treatment for surrogate modeling techniques, such as sparse grids, to be effective. We propose an innovative methodology to this end which relies on a change of coordinate system to align the discontinuities of the target function within the random parameter space. The reference coordinate system is built upon exploiting physical features of the problem at hand. We employ the locations of material interfaces, which display a smooth dependence on the random parameters and are therefore amenable to sparse grid polynomial approximations. We showcase the capabilities of our numerical methodologies through two synthetic test cases. In particular, we show that our methodology reproduces with high accuracy multi-modal probability density functions displayed by target state variables (e.g., porosity).Comment: 25 pages, 30 figure

    Bifurcations and dynamics emergent from lattice and continuum models of bioactive porous media

    Full text link
    We study dynamics emergent from a two-dimensional reaction--diffusion process modelled via a finite lattice dynamical system, as well as an analogous PDE system, involving spatially nonlocal interactions. These models govern the evolution of cells in a bioactive porous medium, with evolution of the local cell density depending on a coupled quasi--static fluid flow problem. We demonstrate differences emergent from the choice of a discrete lattice or a continuum for the spatial domain of such a process. We find long--time oscillations and steady states in cell density in both lattice and continuum models, but that the continuum model only exhibits solutions with vertical symmetry, independent of initial data, whereas the finite lattice admits asymmetric oscillations and steady states arising from symmetry-breaking bifurcations. We conjecture that it is the structure of the finite lattice which allows for more complicated asymmetric dynamics. Our analysis suggests that the origin of both types of oscillations is a nonlocal reaction-diffusion mechanism mediated by quasi-static fluid flow.Comment: 30 pages, 21 figure

    Uncertainty-aware Validation Benchmarks for Coupling Free Flow and Porous-Medium Flow

    Full text link
    A correct choice of interface conditions and useful model parameters for coupled free-flow and porous-medium systems is vital for physically consistent modeling and accurate numerical simulations of applications. We consider the Stokes--Darcy problem with different models for the porous-medium compartment and corresponding coupling strategies: the standard averaged model based on Darcy's law with classical or generalized interface conditions, as well as the pore-network model. We study the coupled flow problems' behaviors considering a benchmark case where a pore-scale resolved model provides the reference solution and quantify the uncertainties in the models' parameters and the reference data. To achieve this, we apply a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a model reduction technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the calibration and validation processes for computationally demanding Stokes--Darcy models with different coupling strategies. We perform uncertainty-aware validation, demonstrate each model's predictive capabilities, and make a model comparison using a Bayesian validation metric

    Prediction of the intramembranous tissue formation during perisprosthetic healing with uncertainties. Part 1. Effect of the variability of each biochemical factor

    Get PDF
    A stochastic model is proposed to predict the intramembranous process in periprosthetic healing in the early post-operative period. The methodology was validated by a canine experimental model. In this first part, the effects of each individual uncertain biochemical factor on the bone-implant healing are examined, including the coefficient of osteoid synthesis, the coefficients of haptotactic and chemotactic migration of osteoblastic population and the radius of the drill hole. A multi-phase reactive model solved by an explicit finite difference scheme is combined with the polynomial chaos expansion to solve the stochastic system. In the second part, combined biochemical factors are considered to study a real configuration of clinical acts
    • …
    corecore