3,000 research outputs found

    Emergent requirements for supporting introductory programming

    Get PDF
    The problems associated with learning and teaching first year University Computer Science (CS1) programming classes are summarized showing that various support tools and techniques have been developed and evaluated. From this review of applicable support the paper derives ten requirements that a support tool should have in order to improve CS1 student success rate with respect to learning and understanding

    Report on a User Test and Extension of a Type Debugger for Novice Programmers

    Full text link
    A type debugger interactively detects the expressions that cause type errors. It asks users whether they intend the types of identifiers to be those that the compiler inferred. However, it seems that novice programmers often get in trouble when they think about how to fix type errors by reading the messages given by the type debugger. In this paper, we analyze the user tests of a type debugger and report problems of the current type debugger. We then extend the type debugger to address these problems. Specifically, we introduce expression-specific error messages and language levels. Finally, we show type errors that we think are difficult to explain to novice programmers. The subjects of the user tests were 40 novice students belonging to the department of information science at Ochanomizu University.Comment: In Proceedings TFPIE 2014, arXiv:1412.473

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    37 Million Compilations: Investigating Novice Programming Mistakes in Large-Scale Student Data

    Get PDF
    Previous investigations of student errors have typically focused on samples of hundreds of students at individual institutions. This work uses a year's worth of compilation events from over 250,000 students all over the world, taken from the large Blackbox data set. We analyze the frequency, time-to-fix, and spread of errors among users, showing how these factors inter-relate, in addition to their development over the course of the year. These results can inform the design of courses, textbooks and also tools to target the most frequent (or hardest to fix) errors

    Early childhood preservice teachers' debugging block-based programs: An eye tracking study

    Get PDF
    Learning computational skills such as programming and debugging is very important for K-12 students given the increasing need of workforce proficient in computing technologies. Programming is an intricate cognitive task that entails iteratively creating and revising programs to create an artifact. Central to programming is debugging, which consists of systematically identifying and fixing program errors. Given its central role, debugging should be explicitly taught to early childhood preservice teachers so they can support their future students’ learning to program and debug errors. In this study, we propose using eye-tracking data and cued retrospective reporting to assess preservice teachers’ cognitive strategies while debugging. Several eye-tracking studies have investigated learners’ debugging strategies though the literature lacks studies (a) conducted with early childhood preservice teachers and (b) that focus on block-based programming languages, such as Scratch. The present study addresses this gap in the literature. This study used mixed methods to triangulate quantitative findings from eye movement analysis and qualitative findings about employed debugging strategies into the creation of descriptive themes. Results showed that participants developed strategies such as simultaneous review of output and code, use of beacons to narrow down the area to be debugged, and eye fixation on output to form hypotheses. But most often, debugging was not informed by a hypothesis, which led to trial and error. Study limitations and directions for future research are discussed.&nbsp

    Investigating novice programming mistakes: educator beliefs vs. student data

    Get PDF
    Educators often form opinions on which programming mistakes novices make most often - for example, in Java: "they always confuse equality with assignment", or "they always call methods with the wrong types". These opinions are generally based solely on personal experience. We report a study to determine if programming educators form a consensus about which Java programming mistakes are the most common. We used the Blackbox data set to check whether the educators' opinions matched data from over 100,000 students - and checked whether this agreement was mediated by educators' experience. We found that educators formed only a weak consensus about which mistakes are most frequent, that their rankings bore only a moderate correspondence to the students in the Blackbox data, and that educators' experience had no effect on this level of agreement. These results raise questions about claims educators make regarding which errors students are most likely to commit

    Debugging: The Key to Unlocking the Mind of a Novice Programmer?

    Get PDF
    Novice programmers must master two skills to show lasting success: writing code and, when that fails, the ability to debug it. Instructors spend much time teaching the details of writing code but debugging gets significantly less attention. But what if teaching debugging could implicitly teach other aspects of coding better than teaching a language teaching debugging? This paper explores a new theoretical framework, the Theory of Applied Mind for Programming (TAMP), which merges dual process theory with Jerome Bruner’s theory of representations to model the mind of a programmer. TAMP looks to provide greater explanatory power in why novices struggle and suggest pedagogy to bridge gaps in learning. This paper will provide an example of this by reinterpreting debugging literature using TAMP as a theoretical guide. Incorporating new view theoretical viewpoints from old studies suggests a “debugging-first” pedagogy can supplement existing methods of teaching programming and perhaps fill some of the mental gaps TAMP suggests hamper novice programmers
    • …
    corecore