23,724 research outputs found

    Learning to Translate in Real-time with Neural Machine Translation

    Get PDF
    Translating in real-time, a.k.a. simultaneous translation, outputs translation words before the input sentence ends, which is a challenging problem for conventional machine translation methods. We propose a neural machine translation (NMT) framework for simultaneous translation in which an agent learns to make decisions on when to translate from the interaction with a pre-trained NMT environment. To trade off quality and delay, we extensively explore various targets for delay and design a method for beam-search applicable in the simultaneous MT setting. Experiments against state-of-the-art baselines on two language pairs demonstrate the efficacy of the proposed framework both quantitatively and qualitatively.Comment: 10 pages, camera read

    Backchannels: Quantity, Type and Timing Matters

    Get PDF
    In a perception experiment, we systematically varied the quantity, type and timing of backchannels. Participants viewed stimuli of a real speaker side-by-side with an animated listener and rated how human-like they perceived the latter's backchannel behavior. In addition, we obtained measures of appropriateness and optionality for each backchannel from key strokes. This approach allowed us to analyze the influence of each of the factors on entire fragments and on individual backchannels. The originally performed type and timing of a backchannel appeared to be more human-like, compared to a switched type or random timing. In addition, we found that nods are more often appropriate than vocalizations. For quantity, too few or too many backchannels per minute appeared to reduce the quality of the behavior. These findings are important for the design of algorithms for the automatic generation of backchannel behavior for artificial listeners

    Predicting continuous conflict perception with Bayesian Gaussian processes

    Get PDF
    Conflict is one of the most important phenomena of social life, but it is still largely neglected by the computing community. This work proposes an approach that detects common conversational social signals (loudness, overlapping speech, etc.) and predicts the conflict level perceived by human observers in continuous, non-categorical terms. The proposed regression approach is fully Bayesian and it adopts Automatic Relevance Determination to identify the social signals that influence most the outcome of the prediction. The experiments are performed over the SSPNet Conflict Corpus, a publicly available collection of 1430 clips extracted from televised political debates (roughly 12 hours of material for 138 subjects in total). The results show that it is possible to achieve a correlation close to 0.8 between actual and predicted conflict perception

    A Preliminary Evaluation of ChatGPT for Zero-shot Dialogue Understanding

    Full text link
    Zero-shot dialogue understanding aims to enable dialogue to track the user's needs without any training data, which has gained increasing attention. In this work, we investigate the understanding ability of ChatGPT for zero-shot dialogue understanding tasks including spoken language understanding (SLU) and dialogue state tracking (DST). Experimental results on four popular benchmarks reveal the great potential of ChatGPT for zero-shot dialogue understanding. In addition, extensive analysis shows that ChatGPT benefits from the multi-turn interactive prompt in the DST task but struggles to perform slot filling for SLU. Finally, we summarize several unexpected behaviors of ChatGPT in dialogue understanding tasks, hoping to provide some insights for future research on building zero-shot dialogue understanding systems with Large Language Models (LLMs).Comment: Technical Repor
    corecore