61,705 research outputs found

    Intrusion-aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Get PDF
    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.Comment: 19 pages, 7 figure

    Improvements on coronal hole detection in SDO/AIA images using supervised classification

    Full text link
    We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA), we prepared data sets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011 - 2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine, Linear Support Vector Machine, Decision Tree, and Random Forest and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of ~0.90). Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.Comment: in press for SWS

    Detection Strategies for Extreme Mass Ratio Inspirals

    Full text link
    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these Extreme Mass Ratio Inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for hundreds to thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between Genetic Algorithms and Markov Chain Monte Carlo techniques, along with several time saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.Comment: 10 pages, 4 figures, Updated for LISA 8 Symposium Proceeding

    Surface-wave-enabled darkfield aperture for background suppression during weak signal detection

    Get PDF
    Sensitive optical signal detection can often be confounded by the presence of a significant background, and, as such, predetection background suppression is substantively important for weak signal detection. In this paper, we present a novel optical structure design, termed surface-wave-enabled darkfield aperture (SWEDA), which can be directly incorporated onto optical sensors to accomplish predetection background suppression. This SWEDA structure consists of a central hole and a set of groove pattern that channels incident light to the central hole via surface plasmon wave and surface-scattered wave coupling. We show that the surface wave component can mutually cancel the direct transmission component, resulting in near-zero net transmission under uniform normal incidence illumination. Here, we report the implementation of two SWEDA structures. The first structure, circular-groove-based SWEDA, is able to provide polarization-independent suppression of uniform illumination with a suppression factor of 1230. The second structure, linear-groove-based SWEDA, is able to provide a suppression factor of 5080 for transverse-magnetic wave and can serve as a highly compact (5.5 micrometer length) polarization sensor (the measured transmission ratio of two orthogonal polarizations is 6100). Because the exact destructive interference balance is highly delicate and can be easily disrupted by the nonuniformity of the localized light field or light field deviation from normal incidence, the SWEDA can therefore be used to suppress a bright background and allow for sensitive darkfield sensing and imaging (observed image contrast enhancement of 27 dB for the first SWEDA)

    Novel methods for real-time 3D facial recognition

    Get PDF
    In this paper we discuss our approach to real-time 3D face recognition. We argue the need for real time operation in a realistic scenario and highlight the required pre- and post-processing operations for effective 3D facial recognition. We focus attention to some operations including face and eye detection, and fast post-processing operations such as hole filling, mesh smoothing and noise removal. We consider strategies for hole filling such as bilinear and polynomial interpolation and Laplace and conclude that bilinear interpolation is preferred. Gaussian and moving average smoothing strategies are compared and it is shown that moving average can have the edge over Gaussian smoothing. The regions around the eyes normally carry a considerable amount of noise and strategies for replacing the eyeball with a spherical surface and the use of an elliptical mask in conjunction with hole filling are compared. Results show that the elliptical mask with hole filling works well on face models and it is simpler to implement. Finally performance issues are considered and the system has demonstrated to be able to perform real-time 3D face recognition in just over 1s 200ms per face model for a small database

    Optimizing cooperative cognitive radio networks with opportunistic access

    Get PDF
    Optimal resource allocation for cooperative cognitive radio networks with opportunistic access to the licensed spectrum is studied. Resource allocation is based on minimizing the symbol error rate at the receiver. Both the cases of all-participate relaying and selective relaying are considered. The objective function is derived and the constraints are detailed for both scenarios. It is then shown that the objective functions and the constraints are nonlinear and nonconvex functions of the parameters of interest, that is, source and relay powers, symbol time, and sensing time. Therefore, it is difficult to obtain closed-form solutions for the optimal resource allocation. The optimization problem is then solved using numerical techniques. Numerical results show that the all-participate system provides better performance than its selection counterpart, at the cost of greater resources
    corecore