477 research outputs found

    Towards a centralized multicore automotive system

    Get PDF
    Today’s automotive systems are inundated with embedded electronics to host chassis, powertrain, infotainment, advanced driver assistance systems, and other modern vehicle functions. As many as 100 embedded microcontrollers execute hundreds of millions of lines of code in a single vehicle. To control the increasing complexity in vehicle electronics and services, automakers are planning to consolidate different on-board automotive functions as software tasks on centralized multicore hardware platforms. However, these vehicle software services have different and contrasting timing, safety, and security requirements. Existing vehicle operating systems are ill-equipped to provide all the required service guarantees on a single machine. A centralized automotive system aims to tackle this by assigning software tasks to multiple criticality domains or levels according to their consequences of failures, or international safety standards like ISO 26262. This research investigates several emerging challenges in time-critical systems for a centralized multicore automotive platform and proposes a novel vehicle operating system framework to address them. This thesis first introduces an integrated vehicle management system (VMS), called DriveOS™, for a PC-class multicore hardware platform. Its separation kernel design enables temporal and spatial isolation among critical and non-critical vehicle services in different domains on the same machine. Time- and safety-critical vehicle functions are implemented in a sandboxed Real-time Operating System (OS) domain, and non-critical software is developed in a sandboxed general-purpose OS (e.g., Linux, Android) domain. To leverage the advantages of model-driven vehicle function development, DriveOS provides a multi-domain application framework in Simulink. This thesis also presents a real-time task pipeline scheduling algorithm in multiprocessors for communication between connected vehicle services with end-to-end guarantees. The benefits and performance of the overall automotive system framework are demonstrated with hardware-in-the-loop testing using real-world applications, car datasets and simulated benchmarks, and with an early-stage deployment in a production-grade luxury electric vehicle

    Towards Efficient Explainability of Schedulability Properties in Real-Time Systems

    Get PDF
    The notion of efficient explainability was recently introduced in the context of hard-real-time scheduling: a claim that a real-time system is schedulable (i.e., that it will always meet all deadlines during run-time) is defined to be efficiently explainable if there is a proof of such schedulability that can be verified by a polynomial-time algorithm. We further explore this notion by (i) classifying a variety of common schedulability analysis problems according to whether they are efficiently explainable or not; and (ii) developing strategies for dealing with those determined to not be efficiently schedulable, primarily by identifying practically meaningful sub-problems that are efficiently explainable

    Tехнічні засоби діагностування та контролю бортових систем інформаційного обміну на літаку

    Get PDF
    Робота публікується згідно наказу ректора від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт вищої освіти в репозиторії НАУ". Керівник дипломної роботи: доцент кафедри авіоніки, Слободян Олександр ПетровичТехнічний прогрес в авіаційній та будь-якій іншій галузі тісно пов'язаний з автоматизацією технологічних процесів. Сьогодні Автоматизація технологічних процесів використовується для підвищення характеристик надійності, довговічності, екологічності, ресурсозбереження і, найголовніше, економічності і простоти експлуатації. Завдяки швидкому розвитку комп'ютерних технологій і мікропроцесорів у нас є можливість використовувати більш досконалі і складні методи моніторингу та управління системами авіаційної промисловості і будь-якими іншими. Мікропроцесорні та електронні обчислювальні пристрої, з'єднані обчислювальними і керуючими мережами з використанням загальних баз даних, мають стандарти, що дозволяють модифікувати і інтегрувати нові пристрої, що, в свою чергу, дозволяє інтегрувати і вдосконалювати виробничі процеси і управляти ними. Проектування системи розподіленої інтегрованої модульної авіоніки (DIMA) з використанням розподіленої інтегрованої технології, змішаного планування критичних завдань, резервний планування в режимі реального часу і механізму зв'язку, який запускається за часом, значно підвищує надійність, безпеку і продуктивність інтегрованої електронної системи в режимі реального часу. DIMA являє собою тенденцію розвитку майбутніх систем авіоніки. У цій статті вивчаються і обговорюються архітектурні характеристики DIMA. Потім він детально вивчає та аналізує розвиток ключових технологій в системі DIMA. Нарешті, в ньому розглядається тенденція розвитку технології DIMA

    Anpassen verteilter eingebetteter Anwendungen im laufenden Betrieb

    Get PDF
    The availability of third-party apps is among the key success factors for software ecosystems: The users benefit from more features and innovation speed, while third-party solution vendors can leverage the platform to create successful offerings. However, this requires a certain decoupling of engineering activities of the different parties not achieved for distributed control systems, yet. While late and dynamic integration of third-party components would be required, resulting control systems must provide high reliability regarding real-time requirements, which leads to integration complexity. Closing this gap would particularly contribute to the vision of software-defined manufacturing, where an ecosystem of modern IT-based control system components could lead to faster innovations due to their higher abstraction and availability of various frameworks. Therefore, this thesis addresses the research question: How we can use modern IT technologies and enable independent evolution and easy third-party integration of software components in distributed control systems, where deterministic end-to-end reactivity is required, and especially, how can we apply distributed changes to such systems consistently and reactively during operation? This thesis describes the challenges and related approaches in detail and points out that existing approaches do not fully address our research question. To tackle this gap, a formal specification of a runtime platform concept is presented in conjunction with a model-based engineering approach. The engineering approach decouples the engineering steps of component definition, integration, and deployment. The runtime platform supports this approach by isolating the components, while still offering predictable end-to-end real-time behavior. Independent evolution of software components is supported through a concept for synchronous reconfiguration during full operation, i.e., dynamic orchestration of components. Time-critical state transfer is supported, too, and can lead to bounded quality degradation, at most. The reconfiguration planning is supported by analysis concepts, including simulation of a formally specified system and reconfiguration, and analyzing potential quality degradation with the evolving dataflow graph (EDFG) method. A platform-specific realization of the concepts, the real-time container architecture, is described as a reference implementation. The model and the prototype are evaluated regarding their feasibility and applicability of the concepts by two case studies. The first case study is a minimalistic distributed control system used in different setups with different component variants and reconfiguration plans to compare the model and the prototype and to gather runtime statistics. The second case study is a smart factory showcase system with more challenging application components and interface technologies. The conclusion is that the concepts are feasible and applicable, even though the concepts and the prototype still need to be worked on in future -- for example, to reach shorter cycle times.Eine große Auswahl von Drittanbieter-Lösungen ist einer der Schlüsselfaktoren für Software Ecosystems: Nutzer profitieren vom breiten Angebot und schnellen Innovationen, während Drittanbieter über die Plattform erfolgreiche Lösungen anbieten können. Das jedoch setzt eine gewisse Entkopplung von Entwicklungsschritten der Beteiligten voraus, welche für verteilte Steuerungssysteme noch nicht erreicht wurde. Während Drittanbieter-Komponenten möglichst spät -- sogar Laufzeit -- integriert werden müssten, müssen Steuerungssysteme jedoch eine hohe Zuverlässigkeit gegenüber Echtzeitanforderungen aufweisen, was zu Integrationskomplexität führt. Dies zu lösen würde insbesondere zur Vision von Software-definierter Produktion beitragen, da ein Ecosystem für moderne IT-basierte Steuerungskomponenten wegen deren höherem Abstraktionsgrad und der Vielzahl verfügbarer Frameworks zu schnellerer Innovation führen würde. Daher behandelt diese Dissertation folgende Forschungsfrage: Wie können wir moderne IT-Technologien verwenden und unabhängige Entwicklung und einfache Integration von Software-Komponenten in verteilten Steuerungssystemen ermöglichen, wo Ende-zu-Ende-Echtzeitverhalten gefordert ist, und wie können wir insbesondere verteilte Änderungen an solchen Systemen konsistent und im Vollbetrieb vornehmen? Diese Dissertation beschreibt Herausforderungen und verwandte Ansätze im Detail und zeigt auf, dass existierende Ansätze diese Frage nicht vollständig behandeln. Um diese Lücke zu schließen, beschreiben wir eine formale Spezifikation einer Laufzeit-Plattform und einen zugehörigen Modell-basierten Engineering-Ansatz. Dieser Ansatz entkoppelt die Design-Schritte der Entwicklung, Integration und des Deployments von Komponenten. Die Laufzeit-Plattform unterstützt den Ansatz durch Isolation von Komponenten und zugleich Zeit-deterministischem Ende-zu-Ende-Verhalten. Unabhängige Entwicklung und Integration werden durch Konzepte für synchrone Rekonfiguration im Vollbetrieb unterstützt, also durch dynamische Orchestrierung. Dies beinhaltet auch Zeit-kritische Zustands-Transfers mit höchstens begrenzter Qualitätsminderung, wenn überhaupt. Rekonfigurationsplanung wird durch Analysekonzepte unterstützt, einschließlich der Simulation formal spezifizierter Systeme und Rekonfigurationen und der Analyse der etwaigen Qualitätsminderung mit dem Evolving Dataflow Graph (EDFG). Die Real-Time Container Architecture wird als Referenzimplementierung und Evaluationsplattform beschrieben. Zwei Fallstudien untersuchen Machbarkeit und Nützlichkeit der Konzepte. Die erste verwendet verschiedene Varianten und Rekonfigurationen eines minimalistischen verteilten Steuerungssystems, um Modell und Prototyp zu vergleichen sowie Laufzeitstatistiken zu erheben. Die zweite Fallstudie ist ein Smart-Factory-Demonstrator, welcher herausforderndere Applikationskomponenten und Schnittstellentechnologien verwendet. Die Konzepte sind den Studien nach machbar und nützlich, auch wenn sowohl die Konzepte als auch der Prototyp noch weitere Arbeit benötigen -- zum Beispiel, um kürzere Zyklen zu erreichen

    Precise Scheduling of DAG Tasks with Dynamic Power Management

    Get PDF

    Using Simultaneous Multithreading to Support Real-Time Scheduling

    Get PDF
    The goal of real-time scheduling is to find a way to schedule every program in a specified system without unacceptable deadline misses. If doing so on a given hardware platform is not possible, then the question to ask is ``What can be changed?'' Simultaneous multithreading (SMT) is a technology that allows a single computer core to execute multiple programs at once, at the cost of increasing the time required to execute individual programs. SMT has been shown to improve performance in many areas of computing, but SMT has seen little application to the real-time domain. Reasons for not using SMT in real-time systems include the difficulty of knowing how much execution time a program will require when SMT is in use, concerns that longer execution times could cause unacceptable deadline misses, and the difficulty of deciding which programs should and should not use SMT to share a core. This dissertation shows how SMT can be used to support real-time scheduling in both the hard real-time (HRT) case, where deadline misses are never acceptable, and the soft real-time (SRT) case, where deadline misses are undesirable but tolerable. Contributions can be divided into three categories. First, the effects of SMT on execution times are measured and parameters for modeling the effects of SMT are given. Second, scheduling algorithms for the SRT case that take advantage of SMT are given and evaluated. Third, scheduling algorithms for the HRT case are given and evaluated. In both the SRT and HRT cases, using the proposed algorithms do not lead to unacceptable deadline misses and can have effects similar to increasing a platform's core count by a third or more.Doctor of Philosoph

    Edge Generation Scheduling for DAG Tasks using Deep Reinforcement Learning

    Full text link
    Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications from the automotive, avionics, and industrial domain that implement their functionalities through chains of intercommunicating tasks. This paper studies the problem of scheduling real-time DAG tasks by presenting a novel schedulability test based on the concept of trivial schedulability. Using this schedulability test, we propose a new DAG scheduling framework (edge generation scheduling -- EGS) that attempts to minimize the DAG width by iteratively generating edges while guaranteeing the deadline constraint. We study how to efficiently solve the problem of generating edges by developing a deep reinforcement learning algorithm combined with a graph representation neural network to learn an efficient edge generation policy for EGS. We evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art DAG scheduling heuristics and an optimal mixed-integer linear programming baseline. Experimental results show that the proposed algorithm outperforms the state-of-the-art by requiring fewer processors to schedule the same DAG tasks.Comment: Under revie

    Mixed-Criticality with Integer Multiple WCETs and Dropping Relations: New Scheduling Challenges

    Get PDF
    Scheduling Mixed-Criticality (MC) workload is a challenging problem in real-time computing. Earliest Deadline First Virtual Deadline (EDF-VD) is one of the most famous scheduling algorithm with optimal speedup bound properties. However, when EDF-VD is used to schedule task sets using a model with additional or relaxed constraints, its scheduling properties change. Inspired by an application of MC to the scheduling of fault tolerant tasks, in this article, we propose two models for multiple criticality levels: the first is a specialization of the MC model, and the second is a generalization of it. We then show, via formal proofs and numerical simulations, that the former considerably improves the speedup bound of EDF-VD. Finally, we provide the proofs related to the optimality of the two models, identifying the need of new scheduling algorithms

    Optimal Multiprocessor Locking Protocols Under FIFO Scheduling

    Get PDF
    Real-time locking protocols are typically designed to reduce any priority-inversion blocking (pi-blocking) a task may incur while waiting to access a shared resource. For the multiprocessor case, a number of such protocols have been developed that ensure asymptotically optimal pi-blocking bounds under job-level fixed-priority scheduling. Unfortunately, no optimal multiprocessor real-time locking protocols are known that ensure tight pi-blocking bounds under any scheduler. This paper presents the first such protocols. Specifically, protocols are presented for mutual exclusion, reader-writer synchronization, and k-exclusion that are optimal under first-in-first-out (FIFO) scheduling when schedulability analysis treats suspension times as computation. Experiments are presented that demonstrate the effectiveness of these protocols
    corecore