76,055 research outputs found

    On generalization based on Bi et al. Iterative methods with eighth-order convergence for solving nonlinear equations

    Get PDF
    The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's conjecture relevant to construction optimal methods without memory. Moreover, some concrete methods of this class are shown and implemented numerically, showing their applicability and efficiency.The authors thank the anonymous referees for their valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Islamic Azad University, Hamedan Branch, and Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Lotfi, T.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Abadi, MA.; Zadeh, MM. (2014). On generalization based on Bi et al. Iterative methods with eighth-order convergence for solving nonlinear equations. The Scientific World Journal. 2014. https://doi.org/10.1155/2014/272949S2014Behl, R., Kanwar, V., & Sharma, K. K. (2012). Another Simple Way of Deriving Several Iterative Functions to Solve Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-22. doi:10.1155/2012/294086Fernández-Torres, G., & Vásquez-Aquino, J. (2013). Three New Optimal Fourth-Order Iterative Methods to Solve Nonlinear Equations. Advances in Numerical Analysis, 2013, 1-8. doi:10.1155/2013/957496Kang, S. M., Rafiq, A., & Kwun, Y. C. (2013). A New Second-Order Iteration Method for Solving Nonlinear Equations. Abstract and Applied Analysis, 2013, 1-4. doi:10.1155/2013/487062Soleimani, F., Soleymani, F., & Shateyi, S. (2013). Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations. Discrete Dynamics in Nature and Society, 2013, 1-10. doi:10.1155/2013/301718Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004Bi, W., Wu, Q., & Ren, H. (2009). A new family of eighth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 214(1), 236-245. doi:10.1016/j.amc.2009.03.077Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). New modifications of Potra–Pták’s method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 234(10), 2969-2976. doi:10.1016/j.cam.2010.04.009Cordero, A., & Torregrosa, J. R. (2011). A class of Steffensen type methods with optimal order of convergence. Applied Mathematics and Computation, 217(19), 7653-7659. doi:10.1016/j.amc.2011.02.067Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055Heydari, M., Hosseini, S. M., & Loghmani, G. B. (2011). On two new families of iterative methods for solving nonlinear equations with optimal order. Applicable Analysis and Discrete Mathematics, 5(1), 93-109. doi:10.2298/aadm110228012hGeum, Y. H., & Kim, Y. I. (2010). A multi-parameter family of three-step eighth-order iterative methods locating a simple root. Applied Mathematics and Computation, 215(9), 3375-3382. doi:10.1016/j.amc.2009.10.030Geum, Y. H., & Kim, Y. I. (2011). A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots. Applied Mathematics Letters, 24(6), 929-935. doi:10.1016/j.aml.2011.01.002Geum, Y. H., & Kim, Y. I. (2011). A biparametric family of eighth-order methods with their third-step weighting function decomposed into a one-variable linear fraction and a two-variable generic function. Computers & Mathematics with Applications, 61(3), 708-714. doi:10.1016/j.camwa.2010.12.020Kou, J., Wang, X., & Li, Y. (2010). Some eighth-order root-finding three-step methods. Communications in Nonlinear Science and Numerical Simulation, 15(3), 536-544. doi:10.1016/j.cnsns.2009.04.013Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040Wang, X., & Liu, L. (2010). New eighth-order iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 234(5), 1611-1620. doi:10.1016/j.cam.2010.03.002Wang, X., & Liu, L. (2010). Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Applied Mathematics Letters, 23(5), 549-554. doi:10.1016/j.aml.2010.01.009Sharma, J. R., & Sharma, R. (2009). A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numerical Algorithms, 54(4), 445-458. doi:10.1007/s11075-009-9345-5Soleymani, F. (2011). Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations. Advances in Numerical Analysis, 2011, 1-10. doi:10.1155/2011/270903Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9Soleymani, F., Karimi Vanani, S., & Afghani, A. (2011). A General Three-Step Class of Optimal Iterations for Nonlinear Equations. Mathematical Problems in Engineering, 2011, 1-10. doi:10.1155/2011/469512Soleymani, F., Vanani, S. K., Khan, M., & Sharifi, M. (2012). Some modifications of King’s family with optimal eighth order of convergence. Mathematical and Computer Modelling, 55(3-4), 1373-1380. doi:10.1016/j.mcm.2011.10.016Soleymani, F., Karimi Vanani, S., & Jamali Paghaleh, M. (2012). A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/568740Thukral, R. (2010). A new eighth-order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 217(1), 222-229. doi:10.1016/j.amc.2010.05.048Thukral, R. (2011). Eighth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations. ISRN Applied Mathematics, 2011, 1-12. doi:10.5402/2011/693787Thukral, R. (2012). New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations. International Journal of Mathematics and Mathematical Sciences, 2012, 1-12. doi:10.1155/2012/493456Thukral, R., & Petković, M. S. (2010). A family of three-point methods of optimal order for solving nonlinear equations. Journal of Computational and Applied Mathematics, 233(9), 2278-2284. doi:10.1016/j.cam.2009.10.012Wang, J. (2013). He’s Max-Min Approach for Coupled Cubic Nonlinear Equations Arising in Packaging System. Mathematical Problems in Engineering, 2013, 1-4. doi:10.1155/2013/382509Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Montazeri, H., Soleymani, F., Shateyi, S., & Motsa, S. S. (2012). On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/751975Soleymani, F. (2012). A Rapid Numerical Algorithm to Compute Matrix Inversion. International Journal of Mathematics and Mathematical Sciences, 2012, 1-11. doi:10.1155/2012/134653Soleymani, F. (2013). A new method for solving ill-conditioned linear systems. Opuscula Mathematica, 33(2), 337. doi:10.7494/opmath.2013.33.2.337Thukral, R. (2012). Further Development of Jarratt Method for Solving Nonlinear Equations. Advances in Numerical Analysis, 2012, 1-9. doi:10.1155/2012/493707Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants

    Get PDF
    [EN] We present new high-order optimal iterativemethods for solving a nonlinear equation, f(x) = 0, by using Pade-like approximants. We compose optimal methods of order 4 with Newton's step and substitute the derivative by using an appropriate rational approximant, getting optimal methods of order 8. In the same way, increasing the degree of the approximant, we obtain optimal methods of order 16. We also perform different numerical tests that confirm the theoretical results.This work has been supported by Ministerio de Ciencia e Innovacion de Espana MTM2014-52016-C2-02-P and Generalitat Valenciana PROMETEO/2016/089.Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2017). Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants. Discrete Dynamics in Nature and Society. 1-6. https://doi.org/10.1155/2017/3204652S16Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2013). Basic concepts. Multipoint Methods, 1-26. doi:10.1016/b978-0-12-397013-8.00001-7Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040Sharma, J. R., & Sharma, R. (2009). A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numerical Algorithms, 54(4), 445-458. doi:10.1007/s11075-009-9345-5Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). New modifications of Potra–Pták’s method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 234(10), 2969-2976. doi:10.1016/j.cam.2010.04.009Wang, X., & Liu, L. (2010). New eighth-order iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 234(5), 1611-1620. doi:10.1016/j.cam.2010.03.002Neta, B., & Petković, M. S. (2010). Construction of optimal order nonlinear solvers using inverse interpolation. Applied Mathematics and Computation, 217(6), 2448-2455. doi:10.1016/j.amc.2010.07.045Fidkowski, K. J., Oliver, T. A., Lu, J., & Darmofal, D. L. (2005). p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. Journal of Computational Physics, 207(1), 92-113. doi:10.1016/j.jcp.2005.01.005Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-yKing, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Maheshwari, A. K. (2009). A fourth order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211(2), 383-391. doi:10.1016/j.amc.2009.01.047Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    On improved three-step schemes with high efficiency index and their dynamics

    Full text link
    This paper presents an improvement of the sixth-order method of Chun and Neta as a class of three-step iterations with optimal efficiency index, in the sense of Kung-Traub conjecture. Each member of the presented class reaches the highest possible order using four functional evaluations. Error analysis will be studied and numerical examples are also made to support the theoretical results. We then present results which describe the dynamics of the presented optimal methods for complex polynomials. The basins of attraction of the existing optimal methods and our methods are presented and compared to illustrate their performances.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT Republica Dominicana.Babajee, DKR.; Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR. (2014). On improved three-step schemes with high efficiency index and their dynamics. Numerical Algorithms. 65(1):153-169. https://doi.org/10.1007/s11075-013-9699-6S153169651Pang, J.S., Chan, D.: Iterative methods for variational and complementary problems. Math. Program. 24(1), 284–313 (1982)Sun, D.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91(1), 123–140 (1996)Chun, C., Neta, B.: A new sixth-order scheme for nonlinear equations. Appl. Math. Lett. 25, 185–189 (2012)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)Neta, B.: A new family of high-order methods for solving equations. Int. J. Comput. Math. 14, 191–195 (1983)Neta, B.: On Popovski’s method for nonlinear equations. Appl. Math. Comput. 201, 710–715 (2008)Chun, C., Neta, B.: Some modifications of Newton’s method by the method of undeterminate coefficients. Comput. Math. Appl. 56, 2528–2538 (2008)Chun, C., Lee, M.Y., Neta, B., Dzunic, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Three-step iterative methods with optimal eighth-order convergence. J. Comput. Appl. Math. 235, 3189–3194 (2011)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s methods with optimal eighth order of convergence. Appl. Math. Lett. 24, 2082–2086 (2011)Heydari, M., Hosseini, S.M., Loghmani, G.B.: On two new families of iterative methods for solving nonlinear equations with optimal order. Appl. Anal. Dis. Math. 5, 93–109 (2011)Neta, B., Petkovic, M.S.: Construction of optimal order nonlinear solvers using inverse interpolation. Appl. Math. Comput. 217, 2448–2445 (2010)Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)Soleymani, F., Karimi Vanani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012)Soleymani, F., Karimi Vanani, S., Jamali Paghaleh, M.: A class of three-step derivative-free root solvers with optimal convergence order. J. Appl. Math. 2012, Article ID 568740, 15 pp. (2012). doi: 10.1155/2012/568740Soleymani, F., Sharifi, M., Mousavi, B.S.: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J. Optim. Theory Appl. 153, 225–236 (2012)Stewart, B.D.: Attractor basins of various root-finding methods. M.S. Thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA (2001)Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Scientia 10, 3–35 (2004)Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69, 212–223 (2005)Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton type method. J. Math. Anal. Appl. 366, 24–32 (2010)Neta, B., Chun, C., Scott, M.: A note on the modified super-Halley method. Appl. Math. Comput. 218, 9575–9577 (2012)Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)Ardelean, G.: A comparison between iterative methods by using the basins of attraction. Appl. Math. Comput. 218, 88–95 (2011)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Babajee, D.K.R.: Analysis of higher order variants of Newton’s method and their applications to differential and integral equations and in ocean acidification. Ph.D. Thesis, University of Mauritius (2010

    Optimal high-order methods for solving nonlinear equations

    Full text link
    A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT 2011-1-B1-33 Republica Dominicana.Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2014). Optimal high-order methods for solving nonlinear equations. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/5916382014Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Artidiello, S., Chicharro, F., Cordero, A., & Torregrosa, J. R. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics, 90(10), 2049-2060. doi:10.1080/00207160.2012.748900Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Ik Kim, Y. (2012). A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. International Journal of Computer Mathematics, 89(8), 1051-1059. doi:10.1080/00207160.2012.673597Khan, Y., Fardi, M., & Sayevand, K. (2012). A new general eighth-order family of iterative methods for solving nonlinear equations. Applied Mathematics Letters, 25(12), 2262-2266. doi:10.1016/j.aml.2012.06.014Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9Thukral, R. (2012). New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations. American Journal of Computational and Applied Mathematics, 2(3), 112-118. doi:10.5923/j.ajcam.20120203.08Sharma, J. R., Guha, R. K., & Gupta, P. (2013). Improved King’s methods with optimal order of convergence based on rational approximations. Applied Mathematics Letters, 26(4), 473-480. doi:10.1016/j.aml.2012.11.011Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Widening basins of attraction of optimal iterative methods

    Full text link
    [EN] In this work, we analyze the dynamical behavior on quadratic polynomials of a class of derivative-free optimal parametric iterative methods, designed by Khattri and Steihaug. By using their parameter as an accelerator, we develop different methods with memory of orders three, six and twelve, without adding new functional evaluations. Then a dynamical approach is made, comparing each of the proposed methods with the original ones without memory, with the following empiric conclusion: Basins of attraction of iterative schemes with memory are wider and the behavior is more stable. This has been numerically checked by estimating the solution of a practical problem, as the friction factor of a pipe and also of other nonlinear academic problems.This research was supported by Islamic Azad University, Hamedan Branch, Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and Generalitat Valenciana PROMETEO/2016/089.Bakhtiari, P.; Cordero Barbero, A.; Lotfi, T.; Mahdiani, K.; Torregrosa Sánchez, JR. (2017). Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics. 87(2):913-938. https://doi.org/10.1007/s11071-016-3089-2S913938872Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012)Amat, S., Busquier, S., Bermúdez, C., Magreñán, Á.A.: On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. 84(1), 9–18 (2016)Chun, C., Neta, B.: An analysis of a family of Maheshwari-based optimal eighth order methods. Appl. Math. Comput. 253, 294–307 (2015)Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On improved three-step schemes with high efficiency index and their dynamics. Numer. Algorithms 65(1), 153–169 (2014)Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, London (2013)Ostrowski, A.M.: Solution of Equations and System of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)Khattri, S.K., Steihaug, T.: Algorithm for forming derivative-free optimal methods. Numer. Algorithms 65(4), 809–824 (2014)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Cordero, A., Soleymani, F., Torregrosa, J.R., Shateyi, S.: Basins of Attraction for Various Steffensen-Type Methods. J. Appl. Math. 2014, 1–17 (2014)Devaney, R.L.: The Mandelbrot Set, the Farey Tree and the Fibonacci sequence. Am. Math. Mon. 106(4), 289–302 (1999)McMullen, C.: Families of rational maps and iterative root-finding algorithms. Ann. Math. 125(3), 467–493 (1987)Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 70237035 (2013)Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)Lotfi, T., Magreñán, Á.A., Mahdiani, K., Rainer, J.J.: A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: dynamic study and approach. Appl. Math. Comput. 252, 347–353 (2015)Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 1–11 (2013)Cordero, A., Lotfi, T., Torregrosa, J.R., Assari, P., Mahdiani, K.: Some new bi-accelerator two-point methods for solving nonlinear equations. Comput. Appl. Math. 35(1), 251–267 (2016)Cordero, A., Lotfi, T., Bakhtiari, P., Torregrosa, J.R.: An efficient two-parametric family with memory for nonlinear equations. Numer. Algorithms 68(2), 323–335 (2015)Lotfi, T., Mahdiani, K., Bakhtiari, P., Soleymani, F.: Constructing two-step iterative methods with and without memory. Comput. Math. Math. Phys. 55(2), 183–193 (2015)Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P.: Solving nonlinear problems by Ostrowski–Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)Abad, M., Cordero, A., Torregrosa, J.R.: A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roum. Tome 57(105), 133–145 (2014)Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)White, F.: Fluid Mechanics. McGraw-Hill, Boston (2003)Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)Soleymani, F., Babajee, D.K.R., Shateyi, S., Motsa, S.S.: Construction of optimal derivative-free techniques without memory. J. Appl. Math. (2012). doi: 10.1155/2012/49702

    A family of iterative methods with accelerated eighth-order convergence

    Full text link
    We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorithms with known ones and confirm the theoretical results.The authors would like to thank the referee for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-06-2010-2285.Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2012). A family of iterative methods with accelerated eighth-order convergence. Journal of Applied Mathematics. 2012. https://doi.org/10.1155/2012/2825612012Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8Homeier, H. H. H. (2005). On Newton-type methods with cubic convergence. Journal of Computational and Applied Mathematics, 176(2), 425-432. doi:10.1016/j.cam.2004.07.027Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Chun, C. (2007). Some variants of King’s fourth-order family of methods for nonlinear equations. Applied Mathematics and Computation, 190(1), 57-62. doi:10.1016/j.amc.2007.01.006Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Maheshwari, A. K. (2009). A fourth order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211(2), 383-391. doi:10.1016/j.amc.2009.01.047Neta, B. (1981). On a family of multipoint methods for non-linear equations. International Journal of Computer Mathematics, 9(4), 353-361. doi:10.1080/00207168108803257Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    A class of four parametric with- and without memory root finding methods

    Full text link
    [EN] In this paper, we have constructed a derivative¿free weighted eighth¿order iterative method with and without memory for solving nonlinear equations. This method is an optimal method as it satisfies the Kung¿Traub conjecture. We have used four accelerating parameters, a univariate and a multivariate weight function at the second and third step of the method, respectively. This method is converted into with¿memory method by approximating the parameters using Newton's interpolating polynomials of appropriate degree to increase the order of convergence to 15.51560 and the efficiency index is nearly two. Numerical comparison of our methods is done with the recent methods of respective domain.This research was partially supported by Ministerio de Economía y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Rafi, A. (2019). A class of four parametric with- and without memory root finding methods. Computational and Mathematical Methods. 1-14. https://doi.org/10.1002/cmm4.1024S114Cordero, A., Junjua, M.-D., Torregrosa, J. R., Yasmin, N., & Zafar, F. (2018). Efficient Four-Parametric with-and-without-Memory Iterative Methods Possessing High Efficiency Indices. Mathematical Problems in Engineering, 2018, 1-12. doi:10.1155/2018/8093673Zafar, F., Akram, S., Yasmin, N., & Junjua, M.-D. (2016). On the construction of three step derivative free four-parametric methods with accelerated order of convergence. Journal of Nonlinear Sciences and Applications, 09(06), 4542-4553. doi:10.22436/jnsa.009.06.92King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Herzberger, J. (1974). Über Matrixdarstellungen für Iterationsverfahren bei nichtlinearen Gleichungen. Computing, 12(3), 215-222. doi:10.1007/bf02293107Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707Chun, C., & Neta, B. (2015). On the new family of optimal eighth order methods developed by Lotfi et al. Numerical Algorithms, 72(2), 363-376. doi:10.1007/s11075-015-0048-9Gdawiec, K. (2017). Fractal patterns from the dynamics of combined polynomial root finding methods. Nonlinear Dynamics, 90(4), 2457-2479. doi:10.1007/s11071-017-3813-

    A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

    Full text link
    [EN] The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev¿Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for ¿ = 2,which corresponds to an optimal method in the sense of Kung and Traub¿s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under Grant MTM2014-52016-C2-1-2-P and by the project of Generalitat Valenciana Prometeo/2016/089Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alarcon-Correa, D. (2019). A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots. Mathematics. 7(4):1-12. https://doi.org/10.3390/math7040339S11274Gutiérrez, J. M., & Hernández, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. Bulletin of the Australian Mathematical Society, 55(1), 113-130. doi:10.1017/s0004972700030586Kanwar, V., Singh, S., & Bakshi, S. (2008). Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations. Numerical Algorithms, 47(1), 95-107. doi:10.1007/s11075-007-9149-4Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Xiaojian, Z. (2008). Modified Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 203(2), 824-827. doi:10.1016/j.amc.2008.05.092Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Kou, J., & Li, Y. (2007). Modified Chebyshev–Halley methods with sixth-order convergence. Applied Mathematics and Computation, 188(1), 681-685. doi:10.1016/j.amc.2006.10.018Li, D., Liu, P., & Kou, J. (2014). An improvement of Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 235, 221-225. doi:10.1016/j.amc.2014.02.083Sharma, J. R. (2015). Improved Chebyshev–Halley methods with sixth and eighth order convergence. Applied Mathematics and Computation, 256, 119-124. doi:10.1016/j.amc.2015.01.002Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Behl, R., Alshomrani, A. S., & Motsa, S. S. (2018). An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. Journal of Mathematical Chemistry, 56(7), 2069-2084. doi:10.1007/s10910-018-0857-xMcNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence

    Full text link
    [EN] The main contribution of this study is to present a new optimal eighth-order scheme for locating zeros with multiplicity m > 1. An extensive convergence analysis is presented with the main theorem in order to demonstrate the optimal eighth-order convergence of the proposed scheme. Moreover, a local convergence study for the optimal fourth-order method defined by the first two steps of the new method is presented, allowing us to obtain the radius of the local convergence ball. Finally, numerical tests on some real-life problems, such as a Van der Waals equation of state, a conversion Chemical engineering problem and two standard academic test problems are presented, which confirm the theoretical results established in this paper and the efficiency of this proposed iterative method. We observed from the numerical experiments that our proposed iterative methods have good values for convergence radii. Further, they have not only faster convergence towards the desired zero of the involved function but they also have both smaller residual error and a smaller difference between two consecutive iterations than current existing techniques.This research was partially supported by Ministerio de Economia y Competitividad under grant MTM2014-52016-C2-2-P and by the project of Generalitat Valenciana Prometeo/2016/089.Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alshomrani, AS. (2019). Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence. Mathematical Problems in Engineering. 2019:1-18. https://doi.org/10.1155/2019/1427809S1182019Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2013). Basic concepts. Multipoint Methods, 1-26. doi:10.1016/b978-0-12-397013-8.00001-7Shengguo, L., Xiangke, L., & Lizhi, C. (2009). A new fourth-order iterative method for finding multiple roots of nonlinear equations. Applied Mathematics and Computation, 215(3), 1288-1292. doi:10.1016/j.amc.2009.06.065Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Li, S. G., Cheng, L. Z., & Neta, B. (2010). Some fourth-order nonlinear solvers with closed formulae for multiple roots. Computers & Mathematics with Applications, 59(1), 126-135. doi:10.1016/j.camwa.2009.08.066Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Sharifi, M., Babajee, D. K. R., & Soleymani, F. (2012). Finding the solution of nonlinear equations by a class of optimal methods. Computers & Mathematics with Applications, 63(4), 764-774. doi:10.1016/j.camwa.2011.11.040Soleymani, F., & Babajee, D. K. R. (2013). Computing multiple zeros using a class of quartically convergent methods. Alexandria Engineering Journal, 52(3), 531-541. doi:10.1016/j.aej.2013.05.001Soleymani, F., Babajee, D. K. R., & Lotfi, T. (2013). On a numerical technique for finding multiple zeros and its dynamic. Journal of the Egyptian Mathematical Society, 21(3), 346-353. doi:10.1016/j.joems.2013.03.011Zhou, X., Chen, X., & Song, Y. (2013). Families of third and fourth order methods for multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(11), 6030-6038. doi:10.1016/j.amc.2012.12.041Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Zafar, F., Cordero, A., Quratulain, R., & Torregrosa, J. R. (2017). Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. Journal of Mathematical Chemistry, 56(7), 1884-1901. doi:10.1007/s10910-017-0813-1Geum, Y. H., Kim, Y. I., & Neta, B. (2018). Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. Journal of Computational and Applied Mathematics, 333, 131-156. doi:10.1016/j.cam.2017.10.033Geum, Y. H., Kim, Y. I., & Magreñán, Á. A. (2018). A study of dynamics via Möbius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions. Journal of Computational and Applied Mathematics, 344, 608-623. doi:10.1016/j.cam.2018.06.006Chun, C., & Neta, B. (2015). An analysis of a family of Maheshwari-based optimal eighth order methods. Applied Mathematics and Computation, 253, 294-307. doi:10.1016/j.amc.2014.12.064Thukral, R. (2013). Introduction to Higher-Order Iterative Methods for Finding Multiple Roots of Nonlinear Equations. Journal of Mathematics, 2013, 1-3. doi:10.1155/2013/404635Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160Zhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-2Bi, W., Ren, H., & Wu, Q. (2011). Convergence of the modified Halley’s method for multiple zeros under Hölder continuous derivative. Numerical Algorithms, 58(4), 497-512. doi:10.1007/s11075-011-9466-5Zhou, X., & Song, Y. (2014). Convergence radius of Osada’s method under center-Hölder continuous condition. Applied Mathematics and Computation, 243, 809-816. doi:10.1016/j.amc.2014.06.068Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Balaji, G. V., & Seader, J. D. (1995). Application of interval Newton’s method to chemical engineering problems. Reliable Computing, 1(3), 215-223. doi:10.1007/bf02385253Shacham, M. (1989). An improved memory method for the solution of a nonlinear equation. Chemical Engineering Science, 44(7), 1495-1501. doi:10.1016/0009-2509(89)80026-

    Multidimensional stability analysis of a family of bi-parametric iterative methods

    Full text link
    [EN] In this paper, we present a multidimensional real dynamical study of the Ostrowsky-Chun family of iterative methods to solve systems of nonlinear equations. This family was defined initially for solving scalar equations but, in general, scalar methods can be transferred to make them suitable to solve nonlinear systems. The complex dynamical behavior of the rational operator associated to a scalar method applied to low-degree polynomials has shown to be an efficient tool for analyzing the stability and reliability of the methods. However, a good scalar dynamical behavior does not guarantee a good one in multidimensional case. We found different real intervals where both parameters can be defined assuring a completely stable performance and also other regions where it is dangerous to select any of the parameters, as undesirable behavior as attracting elements that are not solution of the problem to be solved appear. This performance is checked on a problem of chemical wave propagation, Fisher's equation, where the difference in numerical results provided by those elements of the class with good stability properties and those showed to be unstable, is clear.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Multidimensional stability analysis of a family of bi-parametric iterative methods. Journal of Mathematical Chemistry. 55(7):1461-1480. https://doi.org/10.1007/s10910-016-0724-6S14611480557A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appli. Math. Lett. 26(8), 842–848 (2013)A. Cordero, J.R. Torregrosa, F. Soleymani, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014)R.C. Robinson, An introduction to dynamical systems, continous and discrete (Americal Mathematical Society, Providence, 2012)A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, Stability of a fourth order bi-parametric family of iterative methods. Journal of Computational and Applied Mathematics (2016). doi: 10.1016/j.cam.2016.01.013R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937)M. Abad, A. Cordero, J.R. Torregrosa, A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roumanie 57(105), 133–145 (2014)D. Budzko, A. Cordero, J.R. Torregrosa, A new family of iterative methods widening areas of convergence. Appl. Math. Comput. 252, 405–417 (2015)A. Magreñan, A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014
    corecore