22,658 research outputs found

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Simulation Framework for Cooperative Adaptive Cruise Control with Empirical DSRC Module

    Full text link
    Wireless communication plays a vital role in the promising performance of connected and automated vehicle (CAV) technology. This paper proposes a Vissim-based microscopic traffic simulation framework with an analytical dedicated short-range communication (DSRC) module for packet reception. Being derived from ns-2, a packet-level network simulator, the DSRC probability module takes into account the imperfect wireless communication that occurs in real-world deployment. Four managed lane deployment strategies are evaluated using the proposed framework. While the average packet reception rate is above 93\% among all tested scenarios, the results reveal that the reliability of the vehicle-to-vehicle (V2V) communication can be influenced by the deployment strategies. Additionally, the proposed framework exhibits desirable scalability for traffic simulation and it is able to evaluate transportation-network-level deployment strategies in the near future for CAV technologies.Comment: 6 pages, 6 figure, 44th Annual Conference of the IEEE Industrial Electronics Societ

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    Persistent Localized Broadcasting in VANETs

    Get PDF
    We present a communication protocol, called LINGER, for persistent dissemination of delay-tolerant information to vehicular users, within a geographical area of interest. The goal of LINGER is to dispatch and confine information in localized areas of a mobile network with minimal protocol overhead and without requiring knowledge of the vehicles' routes or destinations. LINGER does not require roadside infrastructure support: it selects mobile nodes in a distributed, cooperative way and lets them act as "information bearers", providing uninterrupted information availability within a desired region. We analyze the performance of our dissemination mechanism through extensive simulations, in complex vehicular scenarios with realistic node mobility. The results demonstrate that LINGER represents a viable, appealing alternative to infrastructure-based solutions, as it can successfully drive the information toward a region of interest from a far away source and keep it local with negligible overhead. We show the effectiveness of such an approach in the support of localized broadcasting, in terms of both percentage of informed vehicles and information delivery delay, and we compare its performance to that of a dedicated, state-of-the-art protoco
    corecore