866 research outputs found

    Застосування методів 3Д моделювання для розширення асортименту взуттєвих колодок

    Get PDF
    Взуттєва колодка визначає внутрішню форму взуття. Таким чином, одна з першочергових задач, що виникають при впровадженні САПР для проектування взуття, полягає в поліпшенні методу проектування складної поверхні колодки (тобто, внутрішньої форми взуття), щоб забезпечити ефективне використання функцій САПР для цієї мети. Різноманіття сучасних форм колодок ускладнює завдання розробки їх ергономічних параметрів. Один із способів вирішення цієї проблеми – розробка комбінованих форм колодок, що складаються з раціональної задньої (основної) частини, яка включає п'яткову, геленкову і пучкову частини та змінної фігурної ділянки носка. Це рішення допоможе реалізувати завдання розширення асортиментного ряду колодок на основі базових ергономічних форм. При цьому проблема з'єднання двох різних частин складної просторової форми колодки вирішується за допомогою використання методів Блендінга, Морфинга і Побудови стикувальних поверхонь в середовищі програмного забезпечення PowerShape. Розробка нових форм взуттєвих колодок на основі перевірених ергономічних конструкцій забезпечує гарне поєднання комфорту та естетичного дизайну, створюючи передумови для практичного втілення ідеї універсальної взуттєвої колодки зі змінною носковою частиною.A shoe last determines the inner form of a footwear. Therefore, one of the primary tasks that arise while introducing CAD of footwear is to improve the method of designing the complex surface of the shoe last (the inner form of a shoe) to provide the efficient use of CAD functions for this aim. The variety of modern shapes of shoe lasts complicates the task of developing their rational parameters. One of the ways to solve this problem is developing a combined shoe last that has a scientifically sound back part which includes the heel, instep and ball area, and the convertible toe part. This solution will help to fulfill the task of expanding the assortment range of the shoe lasts using basic ergonomic shapes At the same time, the problem of joining two different parts of a complex spatial shapes of the last is solved by using the methods of blending, morphing and construction of joining surfaces in the PowerShape software environment. The development of the new last shapes based on the tested ergonomic designs ensures a good combination of comfort and aesthetics, creating the preconditions for the practical implementation of the idea of a universal last with a replaceable toe part

    The specification and evaluation of personalised footwear for additive manufacturing

    Get PDF
    The personalisation of footwear offers advantages not only for runners, but to anyone who wishes to become more active. Additive manufacturing (AM) technology has the potential for making footwear personalisation economically feasible by allowing direct manufacture from CAD models and its tool-less capability. This thesis aims to develop and explore the process of footwear personalisation using AM and evaluates such footwear in terms of discomfort and biomechanics. To start to explore this process a repeated measures pilot study was conducted. Six recreational runners had anthropometric measurements of the foot taken and the plantar surface of both feet scanned. From the scans and measurements, personalised glove fit insoles were designed and manufactured using AM. Participants were then fitted with footwear under two experimental conditions (control and personalised), which were compared in terms of discomfort, performance and biomechanics. The findings of this pilot confirmed the feasibility of the personalisation process. A longitudinal study was then conducted to evaluate the short and medium term use of personalised footwear in terms of discomfort and biomechanics. A matched pairs study design was utilised and 38 recreational runners (19 pairs) were recruited. Control (generic shape) and personalised geometry insoles were designed and manufactured using AM. The participants wore the footwear each time they went running for a 3-month period. They also completed an Activity Diary after each training session and attended 4 laboratory sessions during this period. The results showed significantly lower discomfort ratings in the heel area and for overall fit with the personalised insoles. However, discomfort was reported under the arch region for both conditions (supported by the Activity Diary), indicating that the foot scanning position and material may need modifying. With regard to the biomechanics, the personalised insoles also led to significantly lower maximum ankle eversion and lower peak mean pressure under the heel, which are potentially positive effects in terms of reducing injury risk. A case study is then reported which explored foot capture using a dynamic scanner for the design and manufacture of insoles using AM. Through the development of four insoles, it was found that the selection and manipulation of the scan data from the series of frames generated during ground contact were the most demanding elements of the process. Finally, recommendations and guidance are given for the footwear personalisation process (foot scan position, anthropometry, insole design and AM), together with its potential benefits and limitations

    A new approach to shoe last customization.

    Get PDF
    by Leng Jing.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 74-79).Abstracts in English and Chinese.ABSTRACT --- p.i摘要 --- p.iiiACKNOWLEDGEMENTS --- p.vTABLE OF CONTENTS --- p.viLIST OF FIGURES --- p.viiiChapter CHAPTER ONE --- INTRODUCTION --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Project Background --- p.4Chapter 1.3 --- Organization of the Thesis --- p.7Chapter CHAPTER TWO --- LITERATURE SURVEY --- p.8Chapter 2.1 --- History of Shoe Last Making --- p.8Chapter 2.2 --- Review of the Shoe Last Design Approach --- p.11Chapter CHAPTER THREE --- CUSTOM SHOE LAST DESIGN SYSTEM --- p.15Chapter 3.1 --- System Overview --- p.15Chapter 3.2 --- The Scanned Data and Data Alignment --- p.17Chapter 3.3 --- The Computation of Distance Map --- p.21Chapter 3.4 --- The Modification of Distance Map --- p.24Chapter 3.5 --- The Deformation --- p.30Chapter CHAPTER FOUR --- INTERACTIVE LOCAL DEFORMATIONS --- p.35Chapter 4.1 --- Local Deformations --- p.37Chapter 4.2 --- Adaptive Deformation --- p.39Chapter CHAPTER FIVE --- SYSTEM IMPLEMENTATION --- p.43Chapter 5.1 --- Add in Application to SolidWorks® --- p.43Chapter 5.2 --- The Matlab® Implementation --- p.52Chapter CHAPTER SIX --- CONCLUSIONS AND DISCUSSIONS --- p.56Chapter 6.1 --- Summary and Conclusions --- p.56Chapter 6.2 --- Recommendations for Future Research --- p.57APPENDEX A --- p.59SHOE SIZE CONVERTER --- p.59APPENDEX B --- p.60SOURCE CODE OF SHOE LAST CUSTOMIZATION SYSTEM --- p.60BIBLIOGRAPHY --- p.7
    corecore