102 research outputs found

    Exact regularized point particle method for multi-phase flows in the two-way coupling regime

    Get PDF
    Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scales particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any "ah hoc" assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.Comment: Submitted to Journal of Fluid Mechanics, 56 pages, 15 figure

    Modeling Particle-Laden Compressible Flows with an Application to Plume-Surface Interactions

    Full text link
    During planetary descent, rocket plumes fluidize and eject surface granular matter. Consequently, ejected matter has been shown to obscure the landing site and even collide with the lander, causing serious damage. Given the high risk and cost of space exploration, the challenges associated with plume-surface interactions (PSI) are capable of jeopardizing future missions. The erosion, fluidization, and ejecta of granular matter during PSI occurs under transonic/supersonic, high Reynolds number conditions. These flow conditions pose significant challenges in both experimental and numerical analyses. To date, accurate and predictive physics-based models of PSI at relevant landing conditions do not exist. The objective of this project is to develop high-fidelity simulation capabilities to model compressible gas-particle flows at conditions relevant to PSI. To start, a rigorous derivation of the volume-filtered (locally averaged) compressible Navier--Stokes equations is presented for the first time. This derivation reveals many unclosed terms, for which models are either non-existent or not valid under the regimes of interest. To this end, key terms including pseudo-turbulent kinetic energy and pseudo-turbulent Reynolds stresses, are isolated and modeled via a transport equation in a new high-order finite difference Eulerian-Lagrangian framework. A new immersed boundary method is introduced to generate highly resolved, multi-particle simulations for model closure development. Using the proposed immersed boundary method and the Eulerian--Lagrangian framework, high-fidelity PSI simulations are performed. Single-phase jet impingement on flat surfaces is first shown for validation of the flow conditions. The work is then extended to PSI over a granular bed. For this case, it is shown that that ejected particles can exceed sonic speeds at high particle Reynolds numbers while the majority of the granular bed experiences subsonic particle Mach numbers. In addition, granular temperature is found to be most prevalent in region of high shear during crater formation. The uniqueness of this work lies in the combination of first principles physics and numerics to generate a modeling framework to improve predictions of plume-surface interactions for future missions involving entry, descent, and landing on planetary and satellite bodies.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169969/1/grshall_1.pd

    Direct and Large-Eddy Simulation IX

    Get PDF

    Conception et mise en oeuvre de méthodes vortex hybrides-frontières immergées pour des milieux solides-fluides-poreux. Application au contrôle passif d'écoulements.

    Get PDF
    In this work we use a hybrid vortex penalization method (HVP) to simulate incompressibleflows past bluff bodies in complex solid-fluid-porous media. In this hybrid particle approach,the advection phenomenon is modeled through a vortex method in order to benefit from thenatural description of the flow supplied by particle methods and their low numerical diffusionfeatures. A particle remeshing is performed systematically on an underlying Cartesian grid inorder to prevent distortion phenomena. On the other hand, the viscous and stretching effects aswell as the velocity calculation are discretized on the mesh through Eulerian schemes. Finally,the treatment of boundary conditions is handled with a penalization method that is well suitedfor the treatment of solid-fluid-porous media.The HVP method is applied to passive flow control. This flow control study is realized pasta 2D semi-circular cylinder and a 3D hemisphere by adding a porous layer on the surface of thebody. The presence of such porous layer modifies the characteristics of the conditions at theinterfaces and leads to a regularization of the wake and to a decrease of the aerodynamic dragof the controlled obstacle. Through parametric studies on the permeability, the thickness andthe position of the porous coating, this works aims to identify efficient control devices for flowsaround obstacles like the rear-view mirrors of a ground vehicle.Dans cette thèse nous mettons en oeuvre une méthode vortex hybride pénalisée (HVP) afin desimuler des écoulements incompressibles autour de corps non profilés dans des milieux complexessolides-fluides-poreux. Avec cette approche particulaire hybride, le phénomène de convection estmodélisé à l’aide d’une méthode vortex afin de bénéficier du caractère peu diffusif et naturel desméthodes particulaires. Un remaillage des particules est alors réalisé systématiquement sur unegrille cartésienne sous-jacente afin d’éviter les phénomènes de distorsion. D’autre part, les effetsdiffusifs et d’étirement ainsi que le calcul de la vitesse sont traités sur la grille cartésienne, àl’aide de schémas eulériens. Le traitement des conditions de bords aux parois de l’obstacle esteffectué à l’aide d’une technique de pénalisation, particulièrement bien adaptée au traitementde milieux solides-fluides-poreux.Cette méthode HVP est appliquée au contrôle passif d’écoulement. Cette étude de contrôleest effectuée respectivement en 2D et en 3D autour d’un demi-cylindre et d’un hémisphère parl’ajout d’un revêtement poreux à la surface de l’obstacle. La présence de cette couche poreusemodifiant la nature des conditions aux interfaces, permet de régulariser l’écoulement global etde diminuer la traînée aérodynamique de l’obstacle contrôlé. A travers des études paramétriquessur la perméabilité, l’épaisseur et la position du revêtement poreux, ce travail vise à identifier desdispositifs de contrôles efficaces pour des écoulements autour d’obstacles comme des rétroviseursautomobiles

    Adaptive mesh simulations of compressible flows using stabilized formulations

    Get PDF
    This thesis investigates numerical methods that approximate the solution of compressible flow equations. The first part of the thesis is committed to studying the Variational Multi-Scale (VMS) finite element approximation of several compressible flow equations. In particular, the one-dimensional Burgers equation in the Fourier space, and the compressible Navier-Stokes equations written in both conservative and primitive variables are considered. The approximations made for the VMS formulation are extensively researched; the design of the matrix of stabilization parameters, the definition of the space where the subscales live, the inclusion of the temporal derivatives of the subscales, and the non-linear tracking of the subscales are formulated. Also, the addition of local artificial diffusion in the form of shock capturing techniques is included. The accuracy of the formulations is studied for several regimes of the compressible flow, from aeroacoustic flows at low Mach numbers to supersonic shocks. The second part of the thesis is devoted to make the solution of the smallest fluctuating scales of the compressible flow affordable. To this end, a novel algorithm for h−h-refinement of computational physics meshes in a distributed parallel setting, together with the solution of some refinement test cases in supercomputers are presented. The definition of an explicit a-posteriori error estimator that can be used in the adaptive mesh refinement simulations of compressible flows is also developed; the proposed methodology employs the variational subscales as a local error estimate that drives the mesh refinement. The numerical methods proposed in this thesis are capable to describe the high-frequency fluctuations of compressible flows, especially, the ones corresponding to complex aeroacoustic applications. Precisely, the direct simulation of the fricative [s] sound inside a realistic geometry of the human vocal tract is achieved at the end of the thesis.Esta tesis investiga métodos numéricos que aproximan la solución de las ecuaciones de flujo compresible. La primera parte de la tesis está dedicada al estudio de la aproximación numérica del flujo compresible por medio del método multiescala variacional (VMS) en elementos finitos. En particular, se consideran la ecuación de Burgers unidimensional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo compresible escritas en variables conservativas y primitivas. Las aproximaciones hechas para plantear la formulación VMS son ampliamente investigadas; el diseño de la matriz de parámetros de estabilización, la definición del espacio donde viven las subescalas, la inclusión de las derivadas temporales de las subescalas y el seguimiento no lineal de las subescalas son particularidades de la formulación que se analizan para cada una de las ecuaciones consideradas. Además, se incluye la adición de difusión artificial local en forma de técnicas de captura de choque. La precisión de las formulaciones se estudia para varios regímenes del flujo compresible, desde flujos aeroacústicos a bajos números de Mach hasta choques supersónicos. La segunda parte de la tesis está dedicada a hacer asequible la solución de las escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta un algoritmo novedoso para el refinamiento hh de las mallas de física computacional usadas en computación distribuida en paralelo. Además, se demuestra la solución en superordenadores de algunos casos de prueba del refinamiento de mallas. También se desarrolla la definición de un estimador de error explícito a posteriori que se puede usar en las simulaciones adaptativas de refinamiento de malla de flujos compresibles; la metodología propuesta emplea las subescalas variacionales como una estimación de error local que induce el refinamiento de la malla. Los métodos numéricos propuestos en esta tesis son capaces de describir las fluctuaciones de alta frecuencia de los flujos compresibles, especialmente los correspondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación directa del sonido consonántico fricativo [s] dentro de una geometría realista del tracto vocal humano se demuestra al final de la tesis

    Studying Turbulence Using Numerical Simulation Databases

    Get PDF
    The Seventh Summer Program of the Center for Turbulence Research took place in the four-week period, July 5 to July 31, 1998. This was the largest CTR Summer Program to date, involving thirty-six participants from the U. S. and nine other countries. Thirty-one Stanford and NASA-Ames staff members facilitated and contributed to most of the Summer projects. A new feature, and perhaps a preview of the future programs, was that many of the projects were executed on non-NASA computers. These included supercomputers located in Europe as well as those operated by the Departments of Defense and Energy in the United States. In addition, several simulation programs developed by the visiting participants at their home institutions were used. Another new feature was the prevalence of lap-top personal computers which were used by several participants to carry out some of the work that in the past were performed on desk-top workstations. We expect these trends to continue as computing power is enhanced and as more researchers (many of whom CTR alumni) use numerical simulations to study turbulent flows. CTR's main role continues to be in providing a forum for the study of turbulence for engineering analysis and in facilitating intellectual exchange among the leading researchers in the field. Once again the combustion group was the largest. Turbulent combustion has enjoyed remarkable progress in using simulations to address increasingly complex and practically more relevant questions. The combustion group's studies included such challenging topics as fuel evaporation, soot chemistry, and thermonuclear reactions. The latter study was one of three projects related to the Department of Energy's ASCI Program (www.llnl.gov/asci); the other two (rocket propulsion and fire safety) were carried out in the turbulence modeling group. The flow control and acoustics group demonstrated a successful application of the so-called evolution algorithms which actually led to a previously unknown forcing strategy for jets yielding increased spreading rate. A very efficient algorithm for flow in complex geometries with moving boundaries based on the immersed boundary forcing technique was tested with very encouraging results. Also a new strategy for the destruction of aircraft trailing vortices was introduced and tested. The Reynolds Averaged Modeling (RANS) group demonstrated that the elliptic relaxation concept for RANS calculations is also applicable to transonic flows with shocks; however, prediction of laminar/turbulent transition remains an important pacing item. A large fraction of the LES effort was devoted to the development and testing of a new algorithmic procedure (as opposed to phenomenological model) for subgrid scale modeling based on regularized de-filtering of the flow variables. This appears to be a very promising approach, and a significant effort is currently underway to assess its robustness in high Reynolds number flows and in conjunction with numerical methods for complex flows. As part of the Summer Program two review tutorials were given on Turbulent structures in hydrocarbon pool fires (Sheldon Tieszen), and Turbulent combustion modeling: from RANS to LES via DNS (Luc Vervisch); and two seminars entitled Assessment of turbulence models for engineering applications (Paul Durbin) and Subgrid-scale modeling for non-premixed, turbulent reacting flows (James Riley) were presented. A number of colleagues from universities, government agencies, and industry attended the final presentations of the participants on July 31 and participated in the discussions. There are twenty-six papers in this volume grouped in five areas. Each group is preceded with an overview by its coordinator

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA
    • …
    corecore