519 research outputs found

    Analogue neuromorphic systems.

    Get PDF
    This thesis addresses a new area of science and technology, that of neuromorphic systems, namely the problems and prospects of analogue neuromorphic systems. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem of the creation of highly computationally costly systems of nonlinear information processing (such as artificial neural networks and artificial intelligence systems). It shows that an analogue technology could make a vital contribution to the creation such systems. The basic principles of creation of analogue neuromorphic systems are formulated. The importance will be emphasised of the principle of orthogonality for future highly efficient complex information processing systems. Chapter 2 reviews the basics of neural and neuromorphic systems and informs on the present situation in this field of research, including both experimental and theoretical knowledge gained up-to-date. The chapter provides the necessary background for correct interpretation of the results reported in Chapter 3 and for a realistic decision on the direction for future work. Chapter 3 describes my own experimental and computational results within the framework of the subject, obtained at De Montfort University. These include: the building of (i) Analogue Polynomial Approximator/lnterpolatoriExtrapolator, (ii) Synthesiser of orthogonal functions, (iii) analogue real-time video filter (performing the homomorphic filtration), (iv) Adaptive polynomial compensator of geometrical distortions of CRT- monitors, (v) analogue parallel-learning neural network (backpropagation algorithm). Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising analogue technology in up-to-date and future computational systems, and it reports new results within the framework of the subject. The main conclusion is that due to its promising power characteristics, small sizes and high tolerance to degradation, the analogue neuromorphic systems will playa more and more important role in future computational systems (in particular in systems of artificial intelligence)

    Investigation on Mlp Artificial Neural Network Using FPGA For Autonomous Cart Follower System

    Get PDF
    Dengan kos alat pengesan yang semakin rendah, masa depan sistem pedati pengikut autonomi akan dilengkapi dengan lebih banyak alat pengesan. Ini menjadi cabaran rekabentuk dalam mengendalikan data besar dan kerumitan perkukuhan. Kebanyakan sistem yang sedia ada menggunakan papan mikropengawal yang mempunyai prestasi yang terhad dan pengembangan tidak mungkin tanpa penggantian yang lebih baru. Projek ini mencadangkan perlaksanaan alternatif sistem pedati pengikut autonomi dengan model rangkaian neural MLP menggunakan FPGA. Sistem pedati pengikut autonomi yang mengguakan papan mikropengawal telah diubah suai untuk menggunakan papan FPGA dan dilaksanakan melalui Sistem pada Chip (SOC). System rangkaian neural dilatih dalam simulasi dengan vektor latihan yang dikumpul daripada sistem pedati pengikut autonomi yang sedia ada. System rangkaian neural kemudian dilaksanakan sebagai perkukuhan dalam SOC itu. Dalam pemerhatian, jejak perkukuhan model rangkaian neural kekal saiz kecil tanpa mengira saiz rangkaian neural. Hasil kajian menunjukkan bahawa dengan penggunaan sumber tambahan sebanyak 40%, penambahbaikan sistem secara keseluruhan sebanyak 27 kali dicapai dengan penggunaan blok pecutan perkakasan di SOC, berbanding dengan SOC tanpa penggunaan blok pecutan perkakasan. ________________________________________________________________________________________________________________________ The future of the autonomous cart follower system will equipped with lots of sensory data, due to the ever lower cost of sensory device. This provides design challenge on handling large data and firmware complexity. Most of the existing systems are implemented via usage of microcontroller board, which has limited performance and expansion is not possible without replacement of newer board. The project proposes an alternative approach of running the autonomous cart follower systems on neural network model using Field Programmable Gates Array (FPGA). A microcontroller based autonomous cart follower systems is modified to use the FPGA board and implemented via the System on Chip (SOC) approach. The neural network is trained offline in simulation tools with training vector collected from running the existing autonomous cart follower systems. The trained neural network model then implemented as software code in the SOC. By observation the firmware footprint of the neural network model remains small size regardless of the neural network size. The result shows that with 40% more additional resource utilization, the overall system improvement of 27 times is achieved with the usage of hardware acceleration block in SOC compared to SOC without hardware acceleration

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Digitally Programmable Analogue Circuits for Sensor Conditioning Systems

    Get PDF
    This work presents two current-mode integrated circuits designed for sensor signal preprocessing in embedded systems. The proposed circuits have been designed to provide good signal transfer and fulfill their function, while minimizing the load effects due to building complex conditioning architectures. The processing architecture based on the proposed building blocks can be reconfigured through digital programmability. Thus, sensor useful range can be expanded, changes in the sensor operation can be compensated for and furthermore, undesirable effects such as device mismatching and undesired physical magnitudes sensor sensibilities are reduced. The circuits were integrated using a 0.35 μm standard CMOS process. Experimental measurements, load effects and a study of two different tuning strategies are presented. From these results, system performance is tested in an application which entails extending the linear range of a magneto-resistive sensor. Circuit area, average power consumption and programmability features allow these circuits to be included in embedded sensing systems as a part of the analogue conditioning components

    Power Aware Learning for Class AB Analogue VLSI Neural Network

    No full text
    Recent research into Artificial Neural Networks (ANN) has highlighted the potential of using compact analogue ANN hardware cores in embedded mobile devices, where power consumption of ANN hardware is a very significant implementation issue. This paper proposes a learning mechanism suitable for low-power class AB type analogue ANN that not only tunes the network to obtain minimum error, but also adaptively learns to reduce power consumption. Our experiments show substantial reductions in the power budget (30% to 50%) for a variety of example networks as a result of our power-aware learning

    A fully hardware-based memristive multilayer neural network

    Get PDF
    Memristive crossbar arrays promise substantial improvements in computing throughput and power efficiency through in-memory analog computing. Previous machine learning demonstrations with memristive arrays, however, relied on software or digital processors to implement some critical functionalities, leading to frequent analog/digital conversions and more complicated hardware that compromises the energy efficiency and computing parallelism. Here, we show that, by implementing the activation function of a neural network in analog hardware, analog signals can be transmitted to the next layer without unnecessary digital conversion, communication, and processing. We have designed and built compact rectified linear units, with which we constructed a two-layer perceptron using memristive crossbar arrays, and demonstrated a recognition accuracy of 93.63% for the Modified National Institute of Standard and Technology (MNIST) handwritten digits dataset. The fully hardware-based neural network reduces both the data shuttling and conversion, capable of delivering much higher computing throughput and power efficiency

    Strategies for neural networks in ballistocardiography with a view towards hardware implementation

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy at the University of LutonThe work described in this thesis is based on the results of a clinical trial conducted by the research team at the Medical Informatics Unit of the University of Cambridge, which show that the Ballistocardiogram (BCG) has prognostic value in detecting impaired left ventricular function before it becomes clinically overt as myocardial infarction leading to sudden death. The objective of this study is to develop and demonstrate a framework for realising an on-line BCG signal classification model in a portable device that would have the potential to find pathological signs as early as possible for home health care. Two new on-line automatic BeG classification models for time domain BeG classification are proposed. Both systems are based on a two stage process: input feature extraction followed by a neural classifier. One system uses a principal component analysis neural network, and the other a discrete wavelet transform, to reduce the input dimensionality. Results of the classification, dimensionality reduction, and comparison are presented. It is indicated that the combined wavelet transform and MLP system has a more reliable performance than the combined neural networks system, in situations where the data available to determine the network parameters is limited. Moreover, the wavelet transfonn requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced. Overall, a methodology for realising an automatic BeG classification system for a portable instrument is presented. A fully paralJel neural network design for a low cost platform using field programmable gate arrays (Xilinx's XC4000 series) is explored. This addresses the potential speed requirements in the biomedical signal processing field. It also demonstrates a flexible hardware design approach so that an instrument's parameters can be updated as data expands with time. To reduce the hardware design complexity and to increase the system performance, a hybrid learning algorithm using random optimisation and the backpropagation rule is developed to achieve an efficient weight update mechanism in low weight precision learning. The simulation results show that the hybrid learning algorithm is effective in solving the network paralysis problem and the convergence is much faster than by the standard backpropagation rule. The hidden and output layer nodes have been mapped on Xilinx FPGAs with automatic placement and routing tools. The static time analysis results suggests that the proposed network implementation could generate 2.7 billion connections per second performance
    corecore