6,183 research outputs found

    The Army word recognition system

    Get PDF
    The application of speech recognition technology in the Army command and control area is presented. The problems associated with this program are described as well as as its relevance in terms of the man/machine interactions, voice inflexions, and the amount of training needed to interact with and utilize the automated system

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Digital Frequency Domain Multiplexer for mm-Wavelength Telescopes

    Full text link
    An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiments with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250mK and 4K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The signal bandwidth of 0.050 Hz - 100 Hz places extreme requirements on stability and requires powerful filtering techniques to recover the sky-signal from the MHz carriers.Comment: 6 pages, 6 figures, Submitted May 2007 to IEEE Transactions on Nuclear Science (TNS

    A study and experiment plan for digital mobile communication via satellite

    Get PDF
    The viability of mobile communications is examined within the context of a frequency division multiple access, single channel per carrier satellite system emphasizing digital techniques to serve a large population of users. The intent is to provide the mobile users with a grade of service consistant with the requirements for remote, rural (perhaps emergency) voice communications, but which approaches toll quality speech. A traffic model is derived on which to base the determination of the required maximum number of satellite channels to provide the anticipated level of service. Various voice digitalization and digital modulation schemes are reviewed along with a general link analysis of the mobile system. Demand assignment multiple access considerations and analysis tradeoffs are presented. Finally, a completed configuration is described

    Cognitive Sub-Nyquist Hardware Prototype of a Collocated MIMO Radar

    Full text link
    We present the design and hardware implementation of a radar prototype that demonstrates the principle of a sub-Nyquist collocated multiple-input multiple-output (MIMO) radar. The setup allows sampling in both spatial and spectral domains at rates much lower than dictated by the Nyquist sampling theorem. Our prototype realizes an X-band MIMO radar that can be configured to have a maximum of 8 transmit and 10 receive antenna elements. We use frequency division multiplexing (FDM) to achieve the orthogonality of MIMO waveforms and apply the Xampling framework for signal recovery. The prototype also implements a cognitive transmission scheme where each transmit waveform is restricted to those pre-determined subbands of the full signal bandwidth that the receiver samples and processes. Real-time experiments show reasonable recovery performance while operating as a 4x5 thinned random array wherein the combined spatial and spectral sampling factor reduction is 87.5% of that of a filled 8x10 array.Comment: 5 pages, Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) 201

    A Novel Method to Improve the Resolution of Envelope Spectrum for Bearing Fault Diagnosis Based on a Wireless Sensor Node

    Get PDF
    In this paper, an accurate envelope analysis algorithm is developed for a wireless sensor node. Since envelope signals employed in condition monitoring often have narrow frequency bandwidth, the proposed algorithm down-samples and cascades the analyzed envelope signals to construct a relatively long one. Thus, a relatively higher frequency resolution can be obtained by calculating the spectrum of the cascaded signal. In addition, a 50 % overlapping scheme is applied to avoid the distortions caused by Hilbert transform based envelope calculation. The proposed method is implemented on a wireless sensor node and tested successfully for detecting an outer race fault of a rolling bearing. The results show that the frequency resolution of the envelope spectrum is improved by 8 times while the data transmission remains at a low rate

    Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers

    Get PDF
    This paper reports a SAW-less direct-conversion receiver which utilizes a mixed-signal feedforward path to regenerate and adaptively cancel IM3 products, thus accomplishing system-level linearization. The receiver system performance is dominated by a custom integrated RF front end implemented in 130-nm CMOS and achieves an uncorrected out-of-band IIP3 of -7.1 dBm under the worst-case UMTS FDD Region 1 blocking specifications. Under IM3 equalization, the receiver achieves an effective IIP3 of +5.3 dBm and meets the UMTS BER sensitivity requirement with 3.7 dB of margin
    • …
    corecore