19 research outputs found

    A Novel Analog CMOS Cellular Neural Network for Biologically-Inspired Walking Robot

    Get PDF
    Abstract-We propose a novel analog CMOS circuit that implements a class of cellular neural networks (CNNs) for biologically-inspired walking robots. Recently, a class of autonomous CNNs, so-called a reaction-diffusion (RD) CNN, has applied to locomotion control in robotics. We have introduced a novel RD-CNN, and implemented it as an analog CMOS circuit by using multiple-input floating-gate (MIFG) MOS FETs. As a result, the circuit can operate in voltage-mode. From the results on computer simulations, we have shown that the circuit has capability to generate stable rhythmic patterns for locomotion control in a quadruped walking robot

    Prescription of rhythmic patterns for legged locomotion

    Get PDF
    As the engine behind many life phenomena, motor information generated by the central nervous system (CNS) plays a critical role in the activities of all animals. In this work, a novel, macroscopic and model-independent approach is presented for creating different patterns of coupled neural oscillations observed in biological central pattern generators (CPG) during the control of legged locomotion. Based on a simple distributed state machine, which consists of two nodes sharing pre-defined number of resources, the concept of oscillatory building blocks (OBBs) is summarised for the production of elaborated rhythmic patterns. Various types of OBBs can be designed to construct a motion joint of one degree-of-freedom (DOF) with adjustable oscillatory frequencies and duty cycles. An OBBs network can thus be potentially built to generate a full range of locomotion patterns of a legged animal with controlled transitions between different rhythmic patterns. It is shown that gait pattern transition can be achieved by simply changing a single parameter of an OBB module. Essentially this simple mechanism allows for the consolidation of a methodology for the construction of artificial CPG architectures behaving as an asymmetric Hopfield neural network. Moreover, the proposed CPG model introduced here is amenable to analogue and/or digital circuit integration

    Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments

    Get PDF
    This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development

    Intelligent approaches in locomotion - a review

    Get PDF

    Analisi e sintesi di Central Pattern Generator

    Get PDF
    Negli esseri viventi, un Central Pattern Generator (CPG) \ue8 una rete di neuroni relativamente piccola, in grado di produrre pattern ritmici anche in assenza di feedback sensoriali o di segnali provenienti dal sistema nervoso centrale. Queste reti hanno un ruolo fondamentale nella regolazione di molte attivit\ue0 ritmiche, come per esempio la nuotata, la respirazione, la masticazione e la locomozione. Lo studio di queste reti \ue8 di interesse per diverse discipline, non solo per la loro valenza biologica, ma anche per le loro possibili applicazioni alla riabilitazione e al controllo di robot biologicamente ispirati. In questa tesi sono proposti alcuni strumenti per l'analisi, la riduzione, la sintesi e l'emulazione circuitale di tali reti neuronali. In particolare, i tool proposti sono stati applicati ad un caso di studio in cui ci si \ue8 concentrati sul CPG responsabile della locomozione dei topi

    A Bio-inspired Distributed Control Architecture: Coupled Artificial Signalling Networks

    Get PDF
    This thesis studies the applicability of computational models inspired by the structure and dynamics of signalling networks to the control of complex control problems. In particular, this thesis presents two different abstractions that aim to capture the signal processing abilities of biological cells: a stand-alone signalling network and a coupled signalling network. While the former mimics the interacting relationships amongst the components in a signalling pathway, the latter replicates the connectionism amongst signalling pathways. After initially investigating the feasibility of these models for controlling two complex numerical dynamical systems, Chirikov's standard map and the Lorenz system, this thesis explores their applicability to a difficult real world control problem, the generation of adaptive rhythmic locomotion patterns within a legged robotic system. The results highlight that the locomotive movements of a six-legged robot could be controlled in order to adapt the robot's trajectory in a range of challenging environments. In this sense, signalling networks are responsible for the robot adaptability and inter limb coordination as they self-adjust their dynamics according to the terrain's irregularities. More generally, the results of this thesis highlight the capacity of coupled signalling networks to decompose non-linear problems into smaller sub-tasks, which can then be independently solved
    corecore