30,940 research outputs found

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Roadmap on optical security

    Get PDF
    Postprint (author's final draft

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    A branch and bound algorithm to optimize the representation of tabular decision processe.

    Get PDF
    Decision situations have various aspects: knowledge acquisition and structuring, knowledge representation, knowledge validation and decision making. It has been recognized in literature that decision tables can play an important role in each of these stages. It is however not necessary to use only one representation formalism during the whole life cycle of an intelligent system. Likewise it is possible that different formats of the same formalism serve different purposes in the development process.Important in this respect is the search for automated and, if possible, optimized transitions between different formats of a formalism and between various formalisms. In this paper a branch and bound algorithm is presented that transforms expanded decision tables, that, because of their explicit enumeration of all decision cases primarily serve an acquisition and verification function, into optimized contracted decision tables, primarily used as target representation of a decision process. An optimal contracted decision table is a contracted decision table with a condition order which results in the minimum number of contracted decision columns.

    A case-based reasoning approach to improve risk identification in construction projects

    Get PDF
    Risk management is an important process to enhance the understanding of the project so as to support decision making. Despite well established existing methods, the application of risk management in practice is frequently poor. The reasons for this are investigated as accuracy, complexity, time and cost involved and lack of knowledge sharing. Appropriate risk identification is fundamental for successful risk management. Well known risk identification methods require expert knowledge, hence risk identification depends on the involvement and the sophistication of experts. Subjective judgment and intuition usually from par1t of experts’ decision, and sharing and transferring this knowledge is restricted by the availability of experts. Further, psychological research has showed that people have limitations in coping with complex reasoning. In order to reduce subjectivity and enhance knowledge sharing, artificial intelligence techniques can be utilised. An intelligent system accumulates retrievable knowledge and reasoning in an impartial way so that a commonly acceptable solution can be achieved. Case-based reasoning enables learning from experience, which matches the manner that human experts catch and process information and knowledge in relation to project risks. A case-based risk identification model is developed to facilitate human experts making final decisions. This approach exploits the advantage of knowledge sharing, increasing confidence and efficiency in investment decisions, and enhancing communication among the project participants
    corecore