4,334 research outputs found

    Regional coherence evaluation in mild cognitive impairment and Alzheimer's disease based on adaptively extracted magnetoencephalogram rhythms

    Get PDF
    This study assesses the connectivity alterations caused by Alzheimer's disease (AD) and mild cognitive impairment (MCI) in magnetoencephalogram (MEG) background activity. Moreover, a novel methodology to adaptively extract brain rhythms from the MEG is introduced. This methodology relies on the ability of empirical mode decomposition to isolate local signal oscillations and constrained blind source separation to extract the activity that jointly represents a subset of channels. Inter-regional MEG connectivity was analysed for 36 AD, 18 MCI and 26 control subjects in δ, θ, α and β bands over left and right central, anterior, lateral and posterior regions with magnitude squared coherence—c(f). For the sake of comparison, c(f) was calculated from the original MEG channels and from the adaptively extracted rhythms. The results indicated that AD and MCI cause slight alterations in the MEG connectivity. Computed from the extracted rhythms, c(f) distinguished AD and MCI subjects from controls with 69.4% and 77.3% accuracies, respectively, in a full leave-one-out cross-validation evaluation. These values were higher than those obtained without the proposed extraction methodology

    Robust, automated sleep scoring by a compact neural network with distributional shift correction.

    Get PDF
    Studying the biology of sleep requires the accurate assessment of the state of experimental subjects, and manual analysis of relevant data is a major bottleneck. Recently, deep learning applied to electroencephalogram and electromyogram data has shown great promise as a sleep scoring method, approaching the limits of inter-rater reliability. As with any machine learning algorithm, the inputs to a sleep scoring classifier are typically standardized in order to remove distributional shift caused by variability in the signal collection process. However, in scientific data, experimental manipulations introduce variability that should not be removed. For example, in sleep scoring, the fraction of time spent in each arousal state can vary between control and experimental subjects. We introduce a standardization method, mixture z-scoring, that preserves this crucial form of distributional shift. Using both a simulated experiment and mouse in vivo data, we demonstrate that a common standardization method used by state-of-the-art sleep scoring algorithms introduces systematic bias, but that mixture z-scoring does not. We present a free, open-source user interface that uses a compact neural network and mixture z-scoring to allow for rapid sleep scoring with accuracy that compares well to contemporary methods. This work provides a set of computational tools for the robust automation of sleep scoring

    Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media

    Get PDF
    The resistive or non-resistive nature of the extracellular space in the brain is still debated, and is an important issue for correctly modeling extracellular potentials. Here, we first show theoretically that if the medium is resistive, the frequency scaling should be the same for electroencephalogram (EEG) and magnetoencephalogram (MEG) signals at low frequencies (<10 Hz). To test this prediction, we analyzed the spectrum of simultaneous EEG and MEG measurements in four human subjects. The frequency scaling of EEG displays coherent variations across the brain, in general between 1/f and 1/f^2, and tends to be smaller in parietal/temporal regions. In a given region, although the variability of the frequency scaling exponent was higher for MEG compared to EEG, both signals consistently scale with a different exponent. In some cases, the scaling was similar, but only when the signal-to-noise ratio of the MEG was low. Several methods of noise correction for environmental and instrumental noise were tested, and they all increased the difference between EEG and MEG scaling. In conclusion, there is a significant difference in frequency scaling between EEG and MEG, which can be explained if the extracellular medium (including other layers such as dura matter and skull) is globally non-resistive.Comment: Submitted to Journal of Computational Neuroscienc

    Modeling differences in the time-frequency representation of EEG signals through HMM’s for classification of imaginary motor tasks

    Get PDF
    Brain Computer interfaces are systems that allow the control of external devices using the information extracted from the brain signals. Such systems find applications in rehabilitation, as an alternative communication channel and in multimedia applications for entertainment and gaming. In this work, a new approach based on the Time-Frequency (TF) distribution of the signal power, obtained by autoregressive methods and the use Hidden Markov models (HMM) is developed. This approach take into account the changes of power on different frequency bands with time. For that purpose HMM’s are used to modeling the changes in the power during the execution of two different motor tasks. The use of TF methods involves a problem related to the selection of the frequency bands that can lead to over fitting (due to the course of dimensionality) as well as problems related to the selection of the model parameters. These problems are solved in this work by combining two methods for feature selection: Fisher Score and Sequential Floating Forward Selection. The results are compared to the three top results of the BCI competition IV. It is shown here that the proposed method over perform those other methods in four subjects and the average over all the subjects equals the one obtained by the winner algorithm of the competition

    Chaos-modified detrended moving average methodology for monitoring the depth of anaesthesia

    Get PDF
    This paper proposes a new method to monitor the depth of anaesthesia (DoA) based on the EEG signal. This approach firstly uses discrete wavelet transform (DWT) to to remove the spikes and the low frequency noise from raw EEG signals. After de-noising the EEG signals, the modified Hurst parameter is proposed with two new indices (CDoA and CsDoA), to estimate the anaesthesia states of the patients. To reduce the fluctuation of the new DoA index, a combination of Modified Chaos and Modifying Detrended Moving Average is used (MC-DMA). Analyses of variance (ANOVA) for C-MDMA and BIS distributions are presented The results indicate that the C-MDMA distributions at each anaesthesia state level are significantly different and the C-MDMA can distinguish five depths of anaesthesia. Compared with BIS trends, MC-DMA trend is close to BIS trend covering the whole scale from 100 to 0 with a full recording time

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Extraction of features from sleep EEG for Bayesian assessment of brain development

    Get PDF
    Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts' agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy
    corecore