28,230 research outputs found

    Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation

    Get PDF
    We consider the problem of certifying an inequality of the form f(x)0f(x)\geq 0, xK\forall x\in K, where ff is a multivariate transcendental function, and KK is a compact semialgebraic set. We introduce a certification method, combining semialgebraic optimization and max-plus approximation. We assume that ff is given by a syntaxic tree, the constituents of which involve semialgebraic operations as well as some transcendental functions like cos\cos, sin\sin, exp\exp, etc. We bound some of these constituents by suprema or infima of quadratic forms (max-plus approximation method, initially introduced in optimal control), leading to semialgebraic optimization problems which we solve by semidefinite relaxations. The max-plus approximation is iteratively refined and combined with branch and bound techniques to reduce the relaxation gap. Illustrative examples of application of this algorithm are provided, explaining how we solved tight inequalities issued from the Flyspeck project (one of the main purposes of which is to certify numerical inequalities used in the proof of the Kepler conjecture by Thomas Hales).Comment: 7 pages, 3 figures, 3 tables, Appears in the Proceedings of the European Control Conference ECC'13, July 17-19, 2013, Zurich, pp. 2244--2250, copyright EUCA 201

    Bundle-based pruning in the max-plus curse of dimensionality free method

    Full text link
    Recently a new class of techniques termed the max-plus curse of dimensionality-free methods have been developed to solve nonlinear optimal control problems. In these methods the discretization in state space is avoided by using a max-plus basis expansion of the value function. This requires storing only the coefficients of the basis functions used for representation. However, the number of basis functions grows exponentially with respect to the number of time steps of propagation to the time horizon of the control problem. This so called "curse of complexity" can be managed by applying a pruning procedure which selects the subset of basis functions that contribute most to the approximation of the value function. The pruning procedures described thus far in the literature rely on the solution of a sequence of high dimensional optimization problems which can become computationally expensive. In this paper we show that if the max-plus basis functions are linear and the region of interest in state space is convex, the pruning problem can be efficiently solved by the bundle method. This approach combining the bundle method and semidefinite formulations is applied to the quantum gate synthesis problem, in which the state space is the special unitary group (which is non-convex). This is based on the observation that the convexification of the unitary group leads to an exact relaxation. The results are studied and validated via examples
    corecore