20 research outputs found

    A CPHD approximation based on a discrete-Gamma cardinality model

    Get PDF

    A CPHD approximation based on a discrete-Gamma cardinality model

    Get PDF

    Sensor Control for Multi-Object Tracking Using Labeled Multi-Bernoulli Filter

    Full text link
    The recently developed labeled multi-Bernoulli (LMB) filter uses better approximations in its update step, compared to the unlabeled multi-Bernoulli filters, and more importantly, it provides us with not only the estimates for the number of targets and their states, but also with labels for existing tracks. This paper presents a novel sensor-control method to be used for optimal multi-target tracking within the LMB filter. The proposed method uses a task-driven cost function in which both the state estimation errors and cardinality estimation errors are taken into consideration. Simulation results demonstrate that the proposed method can successfully guide a mobile sensor in a challenging multi-target tracking scenario

    Multiple-Object Estimation Techniques for Challenging Scenarios

    Get PDF
    A series of methods for solving the multi-object estimation problem in the context sequential Bayesian inference is presented. These methods concentrate on dealing with challenging scenarios of multiple target tracking, involving fundamental problems of nonlinearity and non-Gaussianity of processes, high state dimensionality, high number of targets, statistical dependence between target states, and degenerate cases of low signal-to-noise ratio, high uncertainty, lowly observable states or uninformative observations. These difficulties pose obstacles to most practical multi-object inference problems, lying at the heart of the shortcomings reported for state-of-the-art methods, and so elicit novel treatments to enable tackling a broader class of real problems. The novel algorithms offered as solutions in this dissertation address such challenges by acting on the root causes of the associated problems. Often this involves essential dilemmas commonly manifested in Statistics and Decision Theory, such as trading off estimation accuracy with algorithm complexity, soft versus hard decision, generality versus tractability, conciseness versus interpretativeness etc. All proposed algorithms constitute stochastic filters, each of which is formulated to address specific aspects of the challenges at hand while offering tools to achieve judicious compromises in the aforementioned dilemmas. Two of the filters address the weight degeneracy observed in sequential Monte Carlo filters, particularly for nonlinear processes. One of these filters is designed for nonlinear non-Gaussian high-dimensional problems, delivering representativeness of the uncertainty in high-dimensional states while mitigating part of the inaccuracies that arise from the curse of dimensionality. This filter is shown to cope well with scenarios of multimodality, high state uncertainty, uninformative observations and high number of false alarms. A multi-object filter deals with the problem of considering dependencies between target states in a way that is scalable to a large number of targets, by resorting to probabilistic graphical structures. Another multi-object filter treats the problem of reducing the computational complexity of a state-of-the-art cardinalized filter to deal with a large number of targets, without compromising accuracy significantly. Finally, a framework for associating measurements across observation sessions for scenarios of low state observability is proposed, with application to an important Space Surveillance task: cataloging of space debris in the geosynchronous/geostationary belt. The devised methods treat the considered challenges by bringing about rather general questions, and provide not only principled solutions but also analyzes the essence of the investigated problems, extrapolating the implemented techniques to a wider spectrum of similar problems in Signal Processing

    Poisson Multi-Bernoulli Mixtures for Multiple Object Tracking

    Get PDF
    Multi-object tracking (MOT) refers to the process of estimating object trajectories of interest based on sequences of noisy sensor measurements obtained from multiple sources. Nowadays, MOT has found applications in numerous areas, including, e.g., air traffic control, maritime navigation, remote sensing, intelligent video surveillance, and more recently environmental perception, which is a key enabling technology in automated vehicles. This thesis studies Poisson multi-Bernoulli mixture (PMBM) conjugate priors for MOT. Finite Set Statistics provides an elegant Bayesian formulation of MOT based on random finite sets (RFSs), and a significant trend in RFSs-based MOT is the development of conjugate distributions in Bayesian probability theory, such as the PMBM distributions. Multi-object conjugate priors are of great interest as they provide families of distributions that are suitable to work with when seeking accurate approximations to the true posterior distributions. Many RFS-based MOT approaches are only concerned with multi-object filtering without attempting to estimate object trajectories. An appealing approach to building trajectories is by computing the multi-object densities on sets of trajectories. This leads to the development of many multi-object filters based on sets of trajectories, e.g., the trajectory PMBM filters. In this thesis, [Paper A] and [Paper B] consider the problem of point object tracking where an object generates at most one measurement per time scan. In [Paper A], a multi-scan implementation of trajectory PMBM filters via dual decomposition is presented. In [Paper B], a multi-trajectory particle smoother using backward simulation is presented for computing the multi-object posterior for sets of trajectories using a sequence of multi-object filtering densities and a multi-object dynamic model. [Paper C] and [Paper D] consider the problem of extended object tracking where an object may generate multiple measurements per time scan. In [Paper C], an extended object Poisson multi-Bernoulli (PMB) filter is presented, where the PMBM posterior density after the update step is approximated as a PMB. In [Paper D], a trajectory PMB filter for extended object tracking using belief propagation is presented, where the efficient PMB approximation is enabled by leveraging the PMBM conjugacy and the factor graph formulation

    A Gaussian inverse Wishart PHD Filter using Stochastic Partitioning for Multiple Extended Object Tracking

    Get PDF
    This thesis deals with the object tracking problem of multiple extended objects. For instance, this tracking problem occurs when a car with sensors drives on the road and detects multiple other cars in front of it. When the setup between the senor and the other cars is in a such way that multiple measurements are created by each single car, the cars are called extended objects. This can occur in real world scenarios, mainly with the use of high resolution sensors in near field applications. Such a near field scenario leads a single object to occupy several resolution cells of the sensor so that multiple measurements are generated per scan. The measurements are additionally superimposed by the sensor’s noise. Beside the object generated measurements, there occur false alarms, which are not caused by any object and sometimes in a sensor scan, single objects could be missed so that they not generate any measurements. To handle these scenarios, object tracking filters are needed to process the sensor measurements in order to obtain a stable and accurate estimate of the objects in each sensor scan. In this thesis, the scope is to implement such a tracking filter that handles the extended objects, i.e. the filter estimates their positions and extents. In context of this, the topic of measurement partitioning occurs, which is a pre-processing of the measurement data. With the use of partitioning, the measurements that are likely generated by one object are put into one cluster, also called cell. Then, the obtained cells are processed by the tracking filter for the estimation process. The partitioning of measurement data is a crucial part for the performance of tracking filter because insufficient partitioning leads to bad tracking performance, i.e. inaccurate object estimates. In this thesis, a Gaussian inverse Wishart Probability Hypothesis Density (GIW-PHD) filter was implemented to handle the multiple extended object tracking problem. Within this filter framework, the number of objects are modelled as Random Finite Sets (RFSs) and the objects’ extent as random matrices (RM). The partitioning methods that are used to cluster the measurement data are existing ones as well as a new approach that is based on likelihood sampling methods. The applied classical heuristic methods are Distance Partitioning (DP) and Sub-Partitioning (SP), whereas the proposed likelihood-based approach is called Stochastic Partitioning (StP). The latter was developed in this thesis based on the Stochastic Optimisation approach by Granström et al. An implementation, including the StP method and its integration into the filter framework, is provided within this thesis. The implementations, using the different partitioning methods, were tested on simulated random multi-object scenarios and in a fixed parallel tracking scenario using Monte Carlo methods. Further, a runtime analysis was done to provide an insight into the computational effort using the different partitioning methods. It emphasized, that the StP method outperforms the classical partitioning methods in scenarios, where the objects move spatially close. The filter using StP performs more stable and with more accurate estimates. However, this advantage is associated with a higher computational effort compared to the classical heuristic partitioning methods
    corecore