141 research outputs found

    Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel

    Full text link
    This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver and required to be perfectly secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast message, confidential message and artificial noise (AN), such that the achievable secrecy rate and multicast rate are simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the context of physical-layer service integration. Since this bi-objective optimization problem is inherently complex to solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant, we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal decomposable form, which is amenable to alternating optimization (AO). Then we compare these two scalarization methods in terms of their overall performance and computational complexity via theoretical analysis as well as numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure

    On the Secrecy Capacity of MIMO Wiretap Channels: Convex Reformulation and Efficient Numerical Methods

    Full text link
    This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints, including sum power constraint, per antenna power constraints and interference power constraint. An analytical solution to this problem is not known and existing numerical solutions suffer from slow convergence rate and/or high per-iteration complexity. Deriving computationally efficient solutions to the secrecy capacity problem is challenging since the secrecy rate is expressed as a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for some special cases. In this paper we propose two low-complexity methods to compute the secrecy capacity along with a convex reformulation for degraded channels. In the first method we capitalize on the accelerated DC algorithm which requires solving a sequence of convex subproblems, for which we propose an efficient iterative algorithm where each iteration admits a closed-form solution. In the second method, we rely on the concave-convex equivalent reformulation of the secrecy capacity problem which allows us to derive the so-called partial best response algorithm to obtain an optimal solution. Notably, each iteration of the second method can also be done in closed form. The simulation results demonstrate a faster convergence rate of our methods compared to other known solutions. We carry out extensive numerical experiments to evaluate the impact of various parameters on the achieved secrecy capacity

    Signal Processing Algorithms for MIMO-NOMA Based 6G Networks

    Get PDF

    Algorithms for Globally-Optimal Secure Signaling over Gaussian MIMO Wiretap Channels Under Interference Constraints

    Full text link
    Multi-user Gaussian MIMO wiretap channel is considered under interference power constraints (IPC), in addition to the total transmit power constraint (TPC). Algorithms for \textit{global} maximization of its secrecy rate are proposed. Their convergence to the secrecy capacity is rigorously proved and a number of properties are established analytically. Unlike known algorithms, the proposed ones are not limited to the MISO case and are proved to converge to a \textit{global} rather than local optimum in the general MIMO case, even when the channel is not degraded. In practice, the convergence is fast as only a small to moderate number of Newton steps is required to achieve a high precision level. The interplay of TPC and IPC is shown to result in an unusual property when an optimal point of the max-min problem does not provide an optimal transmit covariance matrix in some (singular) cases. To address this issue, an algorithm is developed to compute an optimal transmit covariance matrix in those singular cases. It is shown that this algorithm also solves the dual (nonconvex) problems of \textit{globally} minimizing the total transmit power subject to the secrecy and interference constraints; it provides the minimum transmit power and respective signaling strategy needed to achieve the secrecy capacity, hence allowing power savings.Comment: accepted for publicatio
    • …
    corecore