2,648 research outputs found

    Direct 3D Tomographic Reconstruction and Phase-Retrieval of Far-Field Coherent Diffraction Patterns

    Get PDF
    We present an alternative numerical reconstruction algorithm for direct tomographic reconstruction of a sample refractive indices from the measured intensities of its far-field coherent diffraction patterns. We formulate the well-known phase-retrieval problem in ptychography in a tomographic framework which allows for simultaneous reconstruction of the illumination function and the sample refractive indices in three dimensions. Our iterative reconstruction algorithm is based on the Levenberg-Marquardt algorithm. We demonstrate the performance of our proposed method with simulation studies

    Electronic scan weather radar: scan strategy and signal processing for volume targets

    Get PDF
    2013 Fall.Includes bibliographical references.Following the success of the WSR-88D network, considerable effort has been directed toward searching for options for the next generation of weather radar technology. With its superior capability for rapidly scanning the atmosphere, electronically scanned phased array radar (PAR) is a potential candidate. A network of such radars has been recommended for consideration by the National Academies Committee on Weather Radar Technology beyond NEXRAD. While conventional weather radar uses a rotating parabolic antenna to form and direct the beam, a phased array radar superimposes outputs from an array of many similar radiating elements to yield a beam that is scanned electronically. An adaptive scan strategy and advanced signal designs and processing concepts are developed in this work to use PAR effectively for weather observation. An adaptive scan strategy for weather targets is developed based on the space-time variability of the storm under observation. Quickly evolving regions are scanned more often and spatial sampling resolution is matched to spatial scale. A model that includes the interaction between space and time is used to extract spatial and temporal scales of the medium and to define scanning regions. The temporal scale constrains the radar revisit time while the measurement accuracy controls the dwell time. These conditions are employed in a task scheduler that works on a ray-by-ray basis and is designed to balance task priority and radar resources. The scheduler algorithm also includes an optimization procedure for minimizing radar scan time. In this research, a signal model for polarimetric phased array weather radar (PAWR) is presented and analyzed. The electronic scan mechanism creates a complex coupling of horizontal and vertical polarizations that produce the bias in the polarimetric variables retrieval. Methods for bias correction for simultaneous and alternating transmission modes are proposed. It is shown that the bias can be effectively removed; however, data quality degradation occurs at far off boresight directions. The effective range for the bias correction methods is suggested by using radar simulation. The pulsing scheme used in PAWR requires a new ground clutter filtering method. The filter is designed to work with a signal covariance matrix in the time domain. The matrix size is set to match the data block size. The filter's design helps overcome limitations of spectral filtering methods and make efficient use of reducing ground clutter width in PAWR. Therefore, it works on modes with few samples. Additionally, the filter can be directly extended for staggered PRT waveforms. Filter implementation for polarimetric retrieval is also successfully developed and tested for simultaneous and alternating staggered PRT. The performance of these methods is discussed in detail. It is important to achieve high sensitivity for PAWR. The use of low-power solid state transmitters to keep costs down requires pulse compression technique. Wide-band pulse compression filters will partly reduce the system sensitivity performance. A system for sensitivity enhancement (SES) for pulse compression weather radar is developed to mitigate this issue. SES uses a dual-waveform transmission scheme and an adaptive pulse compression filter that is based on the self-consistency between signals of the two waveforms. Using SES, the system sensitivity can be improved by 8 to 10 dB

    Graph Signal Processing-Based Imaging for Synthetic Aperture Radar

    Get PDF
    In this paper, we propose graph signal processing based imaging for synthetic aperture radar. We present a modified version of fused least absolute shrinkage and selection operator to cater for graph structure of the radar image. We solve the cost function via alternating direction method of multipliers. Our method provides improved denoising and resolution enhancing capabilities. It can also accommodate the compressed sensing framework quite easily. Experimental results corroborate the validity of our proposed methodology

    Direction of Arrival Estimation in Low-Cost Frequency Scanning Array Antenna Systems

    Get PDF
    RÉSUMÉ Cette thèse propose des méthodes d'estimation de la direction d'arrivée (DOA) et d'amélioration de la résolution angulaire applicables aux antennes à balayage de fréquence (Frequency Scanning Antenna ou FSA) et présente un développement analytique et des confirmations expérimentales des méthodes proposées. Les FSA sont un sous-ensemble d'antennes à balayage électronique dont l'angle du faisceau principal change en faisant varier la fréquence des signaux. L'utilisation des FSA est un compromis entre des antennes à balayage de phase (phased arrays antennas) plus coûteuses et plus complexes, et des antennes à balayage mécanique plus lentes et non agiles. Bien que l'agilité et le faible coût des FSA les rendent un choix plausible dans certaines applications, les FSA à faible coût peuvent ne pas être conformes aux exigences souhaitées pour l'application cible telles que les exigences de résolution angulaire. Ainsi, cette recherche tente d'abord de caractériser les capacités de résolution angulaire de certains systèmes d'antennes FSA sélectionnés. Elle poursuit en explorant des modifications ou extensions aux algorithmes de super-résolution capables d'améliorer la résolution angulaire de l'antenne et de les adapter pour être appliqués aux FSA. Deux méthodes d'estimation de la résolution angulaire, l'estimation du maximum de vraisemblance (Maximum Likelihood ou ML) et la formation du faisceau de variance minimale de Capon (Minimum Variance Beamforming ou MVB) sont étudiées dans cette recherche. Les deux méthodes sont modifiées pour être applicables aux FSA. De plus, les méthodes d'étalonnage et de pré-traitement requises pour chaque méthode sont également introduites. Les résultats de simulation ont montré qu'en sélectionnant des paramètres corrects, il est possible d'améliorer la résolution angulaire au-delà de la limitation de la largeur de faisceau des FSA en utilisant les deux méthodes. Les critères pour lesquels chaque méthode fonctionne le mieux sont discutés et l'analyse pour justifier les conditions présentées est donnée.----------ABSTRACT This research investigates direction of arrival (DOA) estimation and angular resolution enhancement methods applicable to frequency scanning antennas (FSA) and provides analytical development and experimental validation for the proposed methods. FSAs are a subset of electronically scanning antennas, which scan the angle of their main beam by varying the frequency of the signals. Using FSA is a trade-off between more expensive and complex phase array antennas and slower and non-agile mechanical scanning antennas. Although agility and low-cost of FSAs make them a plausible choice in some application, low-cost FSAs may not comply with the desired requirements for the target application such as angular resolution requirements. Thus, this research attempts to first characterize the angular resolution capabilities of some selected FSA antenna systems, and then modify or extend super-resolution algorithms capable of enhancing the angular resolution of the antenna and adapt them to be applied to FSAs. Two angular resolution estimation methods, maximum likelihood estimation (ML) and Capon minimum variance beamforming (MVB), are studied in this research. Both methods are modified to be applicable to FSAs. In addition, the calibration and pre-processing methods required for each method are also introduced. Simulation results show that by selecting correct parameters, it is possible to enhance angular resolution beyond the beamwidth limitation of FSAs using both methods. The criteria for which each method performs the best are discussed and an analysis supporting the presented conditions are given. The proposed methods are also validated using the measured antenna radiation pattern of an 8-element FSA which is built based on a composite right/left-handed (CRLH) waveguide. In addition, the experimental results using a beam scanning parabolic reflector antenna using a frequency multiplexed antenna feed is given. The design limitations of this antenna reduces the performance of angular resolution enhancement methods. Therefore, a hybrid scanning system combining mechanical and frequency scanning using the beam scanning reflector antenna is also proposed

    Time-Frequency-Space Transmit Design and Signal Processing with Dynamic Subarray for Terahertz Integrated Sensing and Communication

    Full text link
    Terahertz (THz) integrated sensing and communication (ISAC) enables simultaneous data transmission with Terabit-per-second (Tbps) rate and millimeter-level accurate sensing. To realize such a blueprint, ultra-massive antenna arrays with directional beamforming are used to compensate for severe path loss in the THz band. In this paper, the time-frequency-space transmit design is investigated for THz ISAC to generate time-varying scanning sensing beams and stable communication beams. Specifically, with the dynamic array-of-subarray (DAoSA) hybrid beamforming architecture and multi-carrier modulation, two ISAC hybrid precoding algorithms are proposed, namely, a vectorization (VEC) based algorithm that outperforms existing ISAC hybrid precoding methods and a low-complexity sensing codebook assisted (SCA) approach. Meanwhile, coupled with the transmit design, parameter estimation algorithms are proposed to realize high-accuracy sensing, including a wideband DAoSA MUSIC (W-DAoSA-MUSIC) method for angle estimation and a sum-DFT-GSS (S-DFT-GSS) approach for range and velocity estimation. Numerical results indicate that the proposed algorithms can realize centi-degree-level angle estimation accuracy and millimeter-level range estimation accuracy, which are one or two orders of magnitudes better than the methods in the millimeter-wave band. In addition, to overcome the cyclic prefix limitation and Doppler effects in the THz band, an inter-symbol interference- and inter-carrier interference-tackled sensing algorithm is developed to refine sensing capabilities for THz ISAC

    Project Tech Top study of lunar, planetary and solar topography Final report

    Get PDF
    Data acquisition techniques for information on lunar, planetary, and solar topograph
    • …
    corecore