364 research outputs found

    Shifting representations:Adventures in cross-modality domain adaptation for medical image analysis

    Get PDF

    Bidirectional Learning in Recurrent Neural Networks Using Equilibrium Propagation

    Get PDF
    Neurobiologically-plausible learning algorithms for recurrent neural networks that can perform supervised learning are a neglected area of study. Equilibrium propagation is a recent synthesis of several ideas in biological and artificial neural network research that uses a continuous-time, energy-based neural model with a local learning rule. However, despite dealing with recurrent networks, equilibrium propagation has only been applied to discriminative categorization tasks. This thesis generalizes equilibrium propagation to bidirectional learning with asymmetric weights. Simultaneously learning the discriminative as well as generative transformations for a set of data points and their corresponding category labels, bidirectional equilibrium propagation utilizes recurrence and weight asymmetry to share related but non-identical representations within the network. Experiments on an artificial dataset demonstrate the ability to learn both transformations, as well as the ability for asymmetric-weight networks to generalize their discriminative training to the untrained generative task

    Shifting representations:Adventures in cross-modality domain adaptation for medical image analysis

    Get PDF

    Review of Deep Learning Algorithms and Architectures

    Get PDF
    Deep learning (DL) is playing an increasingly important role in our lives. It has already made a huge impact in areas, such as cancer diagnosis, precision medicine, self-driving cars, predictive forecasting, and speech recognition. The painstakingly handcrafted feature extractors used in traditional learning, classification, and pattern recognition systems are not scalable for large-sized data sets. In many cases, depending on the problem complexity, DL can also overcome the limitations of earlier shallow networks that prevented efficient training and abstractions of hierarchical representations of multi-dimensional training data. Deep neural network (DNN) uses multiple (deep) layers of units with highly optimized algorithms and architectures. This paper reviews several optimization methods to improve the accuracy of the training and to reduce training time. We delve into the math behind training algorithms used in recent deep networks. We describe current shortcomings, enhancements, and implementations. The review also covers different types of deep architectures, such as deep convolution networks, deep residual networks, recurrent neural networks, reinforcement learning, variational autoencoders, and others.https://doi.org/10.1109/ACCESS.2019.291220
    • …
    corecore