9,074 research outputs found

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version

    Robust Controllers for Regular Linear Systems with Infinite-Dimensional Exosystems

    Get PDF
    We construct two error feedback controllers for robust output tracking and disturbance rejection of a regular linear system with nonsmooth reference and disturbance signals. We show that for sufficiently smooth signals the output converges to the reference at a rate that depends on the behaviour of the transfer function of the plant on the imaginary axis. In addition, we construct a controller that can be designed to achieve robustness with respect to a given class of uncertainties in the system, and present a novel controller structure for output tracking and disturbance rejection without the robustness requirement. We also generalize the internal model principle for regular linear systems with boundary disturbance and for controllers with unbounded input and output operators. The construction of controllers is illustrated with an example where we consider output tracking of a nonsmooth periodic reference signal for a two-dimensional heat equation with boundary control and observation, and with periodic disturbances on the boundary.Comment: 30 pages, 3 figures, to appear in SIAM Journal on Control & Optimizatio

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Magnetic Actuators and Suspension for Space Vibration Control

    Get PDF
    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals

    Controller Design for Robust Output Regulation of Regular Linear Systems

    Get PDF
    We present three dynamic error feedback controllers for robust output regulation of regular linear systems. These controllers are (i) a minimal order robust controller for exponentially stable systems (ii) an observer-based robust controller and (iii) a new internal model based robust controller structure. In addition, we present two controllers that are by construction robust with respect to predefined classes of perturbations. The results are illustrated with an example where we study robust output tracking of a sinusoidal reference signal for a two-dimensional heat equation with boundary control and observation.Comment: 26 pages, 2 figures, to appear in IEEE Transactions on Automatic Contro
    • …
    corecore