8,083 research outputs found

    Computation using Noise-based Logic: Efficient String Verification over a Slow Communication Channel

    Full text link
    Utilizing the hyperspace of noise-based logic, we show two string verification methods with low communication complexity. One of them is based on continuum noise-based logic. The other one utilizes noise-based logic with random telegraph signals where a mathematical analysis of the error probability is also given. The last operation can also be interpreted as computing universal hash functions with noise-based logic and using them for string comparison. To find out with 10^-25 error probability that two strings with arbitrary length are different (this value is similar to the error probability of an idealistic gate in today's computer) Alice and Bob need to compare only 83 bits of the noise-based hyperspace.Comment: Accepted for publication in European Journal of Physics B (November 10, 2010

    Enhancing Approximations for Regular Reachability Analysis

    Get PDF
    This paper introduces two mechanisms for computing over-approximations of sets of reachable states, with the aim of ensuring termination of state-space exploration. The first mechanism consists in over-approximating the automata representing reachable sets by merging some of their states with respect to simple syntactic criteria, or a combination of such criteria. The second approximation mechanism consists in manipulating an auxiliary automaton when applying a transducer representing the transition relation to an automaton encoding the initial states. In addition, for the second mechanism we propose a new approach to refine the approximations depending on a property of interest. The proposals are evaluated on examples of mutual exclusion protocols

    On Global Types and Multi-Party Session

    Get PDF
    Global types are formal specifications that describe communication protocols in terms of their global interactions. We present a new, streamlined language of global types equipped with a trace-based semantics and whose features and restrictions are semantically justified. The multi-party sessions obtained projecting our global types enjoy a liveness property in addition to the traditional progress and are shown to be sound and complete with respect to the set of traces of the originating global type. Our notion of completeness is less demanding than the classical ones, allowing a multi-party session to leave out redundant traces from an underspecified global type. In addition to the technical content, we discuss some limitations of our language of global types and provide an extensive comparison with related specification languages adopted in different communities

    A Trace Logic for Local Security Properties

    Get PDF
    We propose a new simple \emph{trace} logic that can be used to specify \emph{local security properties}, i.e. security properties that refer to a single participant of the protocol specification. Our technique allows a protocol designer to provide a formal specification of the desired security properties, and integrate it naturally into the design process of cryptographic protocols. Furthermore, the logic can be used for formal verification. We illustrate the utility of our technique by exposing new attacks on the well studied protocol TMN.Comment: New versio
    • …
    corecore