409 research outputs found

    Hamiltonicity problems in random graphs

    Get PDF
    In this thesis, we present some of the main results proved by the author while fulfilling his PhD. While we present all the relevant results in the introduction of the thesis, we have chosen to focus on two of the main ones. First, we show a very recent development about Hamiltonicity in random subgraphs of the hypercube, where we have resolved a long standing conjecture dating back to the 1980s. Second, we present some original results about correlations between the appearance of edges in random regular hypergraphs, which have many applications in the study of subgraphs of random regular hypergraphs. In particular, these applications include subgraph counts and property testing

    Distributed Calculation of Edge-Disjoint Spanning Trees for Robustifying Distributed Algorithms Against Man-in-the-Middle Attacks

    Get PDF
    In this paper we provide a distributed methodology to allow a network of agents, tasked to execute a distributed algorithm, to overcome Man-in-the-middle attacks that aim at steering the result of the algorithm towards inconsistent values or dangerous configurations. We want the agents to be able to restore the correct result of the algorithm in spite of the attacks. To this end, we provide a distributed algorithm to let the set of agents, interconnected by an undirected network topology, construct several edge−disjointspanningtreesedge-disjoint spanning trees by assigning a label to their incident edges. The ultimate objective is to use these spanning trees to run multiple instances of the same distributed algorithm in parallel, in order to be able to detect Man-in-the- middle attacks or other faulty or malicious link behavior (e.g., when the instances yield different results) and to restore the correct result (when the majority of instances is unaffected). The proposed algorithm is lightweight and asynchronous, and is based on iterated depth-first visits on the graph. We complement the paper with a thorough analysis of the performance of the proposed algorithms. IEEE Journal Articl

    Packing and embedding large subgraphs

    Get PDF
    This thesis contains several embedding results for graphs in both random and non random settings. Most notably, we resolve a long standing conjecture that the threshold probability for Hamiltonicity in the random binomial subgraph of the hypercube equals 1/21/2. %posed e.g.~by Bollob\'as, In Chapter 2 we obtain the following perturbation result regarding the hypercube \cQ^n: if H\subseteq\cQ^n satisfies δ(H)≥αn\delta(H)\geq\alpha n with α>0\alpha>0 fixed and we consider a random binomial subgraph \cQ^n_p of \cQ^n with p∈(0,1]p\in(0,1] fixed, then with high probability H\cup\cQ^n_p contains kk edge-disjoint Hamilton cycles, for any fixed k∈Nk\in\mathbb{N}. This result is part of a larger volume of work where we also prove the corresponding hitting time result for Hamiltonicity. In Chapter 3 we move to a non random setting. %to a deterministic one. %Instead of embedding a single Hamilton cycle our result concerns packing more general families of graphs into a fixed host graph. Rather than pack a small number of Hamilton cycles into a fixed host graph, our aim is to achieve optimally sized packings of more general families of graphs. More specifically, we provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. %In general, this degree condition is best possible. %In particular, this yields an approximate version of the tree packing conjecture %in the setting of regular host graphs GG of high degree. %Similarly, our result implies approximate versions of the Oberwolfach problem, %the Alspach problem and the existence of resolvable designs in the setting of %regular host graphs of high degree. In particular, this yields approximate versions of the the tree packing conjecture, the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree

    Graph Powers: Hardness Results, Good Characterizations and Efficient Algorithms

    Get PDF
    Given a graph H = (V_H,E_H) and a positive integer k, the k-th power of H, written H^k, is the graph obtained from H by adding edges between any pair of vertices at distance at most k in H; formally, H^k = (V_H, {xy | 1 <= d_H (x, y) <= k}). A graph G is the k-th power of a graph H if G = H^k, and in this case, H is a k-th root of G. Our investigations deal with the computational complexity of recognizing k-th powers of general graphs as well as restricted graphs. This work provides new NP-completeness results, good characterizations and efficient algorithms for graph powers
    • …
    corecore