68,826 research outputs found

    An Algorithm for the Graph Crossing Number Problem

    Full text link
    We study the Minimum Crossing Number problem: given an nn-vertex graph GG, the goal is to find a drawing of GG in the plane with minimum number of edge crossings. This is one of the central problems in topological graph theory, that has been studied extensively over the past three decades. The first non-trivial efficient algorithm for the problem, due to Leighton and Rao, achieved an O(nlog4n)O(n\log^4n)-approximation for bounded degree graphs. This algorithm has since been improved by poly-logarithmic factors, with the best current approximation ratio standing on O(n \poly(d) \log^{3/2}n) for graphs with maximum degree dd. In contrast, only APX-hardness is known on the negative side. In this paper we present an efficient randomized algorithm to find a drawing of any nn-vertex graph GG in the plane with O(OPT^{10}\cdot \poly(d \log n)) crossings, where OPTOPT is the number of crossings in the optimal solution, and dd is the maximum vertex degree in GG. This result implies an \tilde{O}(n^{9/10} \poly(d))-approximation for Minimum Crossing Number, thus breaking the long-standing O~(n)\tilde{O}(n)-approximation barrier for bounded-degree graphs

    A branch-and-cut approach to the crossing number problem

    Get PDF
    The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph in the plane. Extensive research has produced bounds on the crossing number and exact formulae for special graph classes, yet the crossing numbers of graphs such as K_{11} or K_{9,11} are still unknown. Finding the crossing number is NP-hard for general graphs and no practical algorithm for its computation has been published so far. We present an integer linear programming formulation that is based on a reduction of the general problem to a restricted version of the crossing number problem in which each edge may be crossed at most once. We also present cutting plane generation heuristics and a column generation scheme. As we demonstrate in a computational study, a branch-and-cut algorithm based on these techniques as well as recently published preprocessing algorithms can be used to successfully compute the crossing number for small to medium sized general graphs

    On Graph Crossing Number and Edge Planarization

    Full text link
    Given an n-vertex graph G, a drawing of G in the plane is a mapping of its vertices into points of the plane, and its edges into continuous curves, connecting the images of their endpoints. A crossing in such a drawing is a point where two such curves intersect. In the Minimum Crossing Number problem, the goal is to find a drawing of G with minimum number of crossings. The value of the optimal solution, denoted by OPT, is called the graph's crossing number. This is a very basic problem in topological graph theory, that has received a significant amount of attention, but is still poorly understood algorithmically. The best currently known efficient algorithm produces drawings with O(log2n)(n+OPT)O(\log^2 n)(n + OPT) crossings on bounded-degree graphs, while only a constant factor hardness of approximation is known. A closely related problem is Minimum Edge Planarization, in which the goal is to remove a minimum-cardinality subset of edges from G, such that the remaining graph is planar. Our main technical result establishes the following connection between the two problems: if we are given a solution of cost k to the Minimum Edge Planarization problem on graph G, then we can efficiently find a drawing of G with at most \poly(d)\cdot k\cdot (k+OPT) crossings, where dd is the maximum degree in G. This result implies an O(n\cdot \poly(d)\cdot \log^{3/2}n)-approximation for Minimum Crossing Number, as well as improved algorithms for special cases of the problem, such as, for example, k-apex and bounded-genus graphs

    Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases

    Full text link
    Crossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minimized. So far, the complexity of MLCM has been an open problem. In contrast, the problem variant in which line ends must be placed in outermost position on their edges (MLCM-P) is known to be NP-hard. Our main results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We give an O(logL)O(\sqrt{\log |L|})-approximation algorithm for MLCM-P

    An improved neural network model for the two-page crossing number problem

    Get PDF
    The simplest graph drawing method is that of putting the vertices of a graph on a line and drawing the edges as half-circles either above or below the line. Such drawings are called 2-page book drawings. The smallest number of crossings over all 2-page drawings of a graph G is called the 2-page crossing number of G. Cimikowski and Shope have solved the 2-page crossing number problem for an n-vertex and m-edge graph by using a Hopfield network with 2m neurons. We present here an improved Hopfield modelwith m neurons. The new model achieves much better performance in the quality of solutions and is more efficient than the model of Cimikowski and Shope for all graphs tested. The parallel time complexity of the algorithm, without considering the crossing number calculations, is O(m), for the new Hopfield model with m processors clearly outperforming the previous algorithm

    Crossing and weighted crossing number of near-planar graphs

    Get PDF
    A nonplanar graph G is near-planar if it contains an edge e such that G − e is planar. The problem of determining the crossing number of a near-planar graph is exhibited from different combinatorial viewpoints. On the one hand, we develop min-max formulas involving efficiently computable lower and upper bounds. These min-max results are the first of their kind in the study of crossing numbers and improve the approximation factor for the approximation algorithm given by Hliněny and Salazar (Graph Drawing GD’06). On the other hand, we show that it is NP-hard to compute a weighted version of the crossing number for near-planar graphs

    Parameterized Algorithms and Data Reduction for Safe Convoy Routing

    Get PDF
    We study a problem that models safely routing a convoy through a transportation network, where any vertex adjacent to the travel path of the convoy requires additional precaution: Given a graph G=(V,E), two vertices s,t in V, and two integers k,l, we search for a simple s-t-path with at most k vertices and at most l neighbors. We study the problem in two types of transportation networks: graphs with small crossing number, as formed by road networks, and tree-like graphs, as formed by waterways. For graphs with constant crossing number, we provide a subexponential 2^O(sqrt n)-time algorithm and prove a matching lower bound. We also show a polynomial-time data reduction algorithm that reduces any problem instance to an equivalent instance (a so-called problem kernel) of size polynomial in the vertex cover number of the input graph. In contrast, we show that the problem in general graphs is hard to preprocess. Regarding tree-like graphs, we obtain a 2^O(tw) * l^2 * n-time algorithm for graphs of treewidth tw, show that there is no problem kernel with size polynomial in tw, yet show a problem kernel with size polynomial in the feedback edge number of the input graph

    A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

    Full text link
    We propose a fixed-parameter tractable algorithm for the \textsc{Max-Cut} problem on embedded 1-planar graphs parameterized by the crossing number kk of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most 3k3^k planar graphs, using edge removal and node contraction. The \textsc{Max-Cut} problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with nn nodes and kk edge crossings in time O(3kn3/2logn)\mathcal{O}(3^k \cdot n^{3/2} \log n).Comment: conference version from IWOCA 201
    corecore