2,185 research outputs found

    Certified dimension reduction in nonlinear Bayesian inverse problems

    Get PDF
    We propose a dimension reduction technique for Bayesian inverse problems with nonlinear forward operators, non-Gaussian priors, and non-Gaussian observation noise. The likelihood function is approximated by a ridge function, i.e., a map which depends non-trivially only on a few linear combinations of the parameters. We build this ridge approximation by minimizing an upper bound on the Kullback--Leibler divergence between the posterior distribution and its approximation. This bound, obtained via logarithmic Sobolev inequalities, allows one to certify the error of the posterior approximation. Computing the bound requires computing the second moment matrix of the gradient of the log-likelihood function. In practice, a sample-based approximation of the upper bound is then required. We provide an analysis that enables control of the posterior approximation error due to this sampling. Numerical and theoretical comparisons with existing methods illustrate the benefits of the proposed methodology

    A max-plus finite element method for solving finite horizon deterministic optimal control problems

    Get PDF
    We introduce a max-plus analogue of the Petrov-Galerkin finite element method, to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation, and exploits the properties of projectors on max-plus semimodules. We obtain a nonlinear discretized semigroup, corresponding to a zero-sum two players game. We give an error estimate of order (Δt)1/2+Δx(Δt)1(\Delta t)^{1/2}+\Delta x(\Delta t)^{-1}, for a subclass of problems in dimension 1. We compare our method with a max-plus based discretization method previously introduced by Fleming and McEneaney.Comment: 13 pages, 5 figure

    The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis

    Get PDF
    We introduce a max-plus analogue of the Petrov-Galerkin finite element method to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation. We show that the error in the sup norm can be bounded from the difference between the value function and its projections on max-plus and min-plus semimodules, when the max-plus analogue of the stiffness matrix is exactly known. In general, the stiffness matrix must be approximated: this requires approximating the operation of the Lax-Oleinik semigroup on finite elements. We consider two approximations relying on the Hamiltonian. We derive a convergence result, in arbitrary dimension, showing that for a class of problems, the error estimate is of order δ+Δx(δ)1\delta+\Delta x(\delta)^{-1} or δ+Δx(δ)1\sqrt{\delta}+\Delta x(\delta)^{-1}, depending on the choice of the approximation, where δ\delta and Δx\Delta x are respectively the time and space discretization steps. We compare our method with another max-plus based discretization method previously introduced by Fleming and McEneaney. We give numerical examples in dimension 1 and 2.Comment: 31 pages, 11 figure

    Spectral discretization errors in filtered subspace iteration

    Get PDF
    We consider filtered subspace iteration for approximating a cluster of eigenvalues (and its associated eigenspace) of a (possibly unbounded) selfadjoint operator in a Hilbert space. The algorithm is motivated by a quadrature approximation of an operator-valued contour integral of the resolvent. Resolvents on infinite dimensional spaces are discretized in computable finite-dimensional spaces before the algorithm is applied. This study focuses on how such discretizations result in errors in the eigenspace approximations computed by the algorithm. The computed eigenspace is then used to obtain approximations of the eigenvalue cluster. Bounds for the Hausdorff distance between the computed and exact eigenvalue clusters are obtained in terms of the discretization parameters within an abstract framework. A realization of the proposed approach for a model second-order elliptic operator using a standard finite element discretization of the resolvent is described. Some numerical experiments are conducted to gauge the sharpness of the theoretical estimates

    Parallel eigensolvers in plane-wave Density Functional Theory

    Full text link
    We consider the problem of parallelizing electronic structure computations in plane-wave Density Functional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be found at the eigensolver level. We show how a recently proposed algorithm based on Chebyshev polynomials can scale into the tens of thousands of processors, outperforming block conjugate gradient algorithms for large computations
    corecore