578 research outputs found

    Application of Rational Second Kind Chebyshev Functions for System of Integrodifferential Equations on Semi-Infinite Intervals

    Get PDF
    Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞). This method is based on replacement of the unknown functions by their truncated series of rational Chebyshev expansion. Test examples are considered to show the high accuracy, simplicity, and efficiency of this method

    Center problem for a class of degenerate quartic systems

    Get PDF
    This paper, using pseudo-division algorithm, introduces a method for computing resonant focus numbers of a class of complex polynomial differential systems, establishes the necessary and sufficient conditions for existence of a center for a class of complex quartic systems with a degenerate resonant singular point

    Research on the design of adaptive control systems, volume 1 Final report

    Get PDF
    Adaptive control systems - combined optimization and adaptive control, analysis-synthesis and passive adaptive systems, learning systems, and measurement adaptive system

    Concepts for generating optimum vertical flight profiles

    Get PDF
    Algorithms for generating optimum vertical profiles are derived and examined. These algorithms form the basis for the design of onboard flight management concepts. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff weight, and range-to-destination are presented. Further considerations for mechanizing two different onboard methods of computing near-optimum flight profiles are then outlined. Finally, the results are summarized, and recommendations are made for further work. Technical details of optimum trajectory design, steering requirements for following these trajectories, and off-line computer programs for testing the concepts are included

    Guidance and Control strategies for aerospace vehicles

    Get PDF
    A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions

    Theory of minimum effort control

    Get PDF
    Optimum control theory formulations for solving problems in optimum guidance for interplanetary manned space flight mission

    Structured Low Rank Approximation of a Bezout Matrix

    Full text link

    Center problem for a class of degenerate quartic systems

    Get PDF
    • …
    corecore