674 research outputs found

    Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data

    Get PDF
    [EN] Identifying the influential nodes in complex networks is a fundamental and practical topic at the moment. In this paper, a new centrality measure for complex networks is proposed based on two contrasting models that have their common origin in the well-known PageRank centrality. On the one hand, the essence of the model proposed is taken from the Adapted PageRank Algorithm (APA) centrality, whose main characteristic is that constitutes a measure to establish a ranking of nodes considering the importance of some dataset associated to the network. On the other hand, a technique known as two-layers PageRank approach is applied to this model. This technique focuses on the idea that the PageRank centrality can be understood as a two-layer network, the topological and teleportation layers, respectively. The main point of the proposed centrality is that it combines the APA centrality with the idea of two-layers; however, the difference now is that the teleportation layer is replaced by a layer that collects the data present in the network. This combination gives rise to a new algorithm for ranking the nodes according to their importance. Subsequently, the coherence of the new measure is demonstrated by calculating the correlation and the quantitative differences of both centralities (APA and the new centrality). A detailed study of the differences of both centralities, taking different types of networks, is performed. A real urban network with data randomly generated is evaluated as well as the well-known Zachary's karate club network. Some numerical results are carried out by varying the values of the alpha parameter-known as dumping factor in PageRank model-that varies the importance given to the two layers (topology and data) within the computation of the new centrality. The proposed algorithm takes the best characteristics of the models on which it is based: on the one hand, it is a measure of centrality, in complex networks with data, whose calculation is stable numerically and, on the other hand, it is able to separate the topological properties of the network and the influence of the data.Partially supported by the Spanish Government, Ministerio de Economia y Competividad, grant number TIN2017-84821-P.Agryzkov, T.; Pedroche Sánchez, F.; Tortosa, L.; Vicent, JF. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information. 7(12):1-22. https://doi.org/10.3390/ijgi7120480S122712Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3). doi:10.1103/physreve.73.036125Bonacich, P. (1991). Simultaneous group and individual centralities. Social Networks, 13(2), 155-168. doi:10.1016/0378-8733(91)90018-oStephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social Networks, 11(1), 1-37. doi:10.1016/0378-8733(89)90016-6Szell, M., Lambiotte, R., & Thurner, S. (2010). Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences, 107(31), 13636-13641. doi:10.1073/pnas.1004008107Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2011). Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1), 141-151. doi:10.1109/tits.2010.2074196Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., & Zhou, T. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4), 1777-1787. doi:10.1016/j.physa.2011.09.017Zhou, Y.-B., Lü, L., & Li, M. (2012). Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity. New Journal of Physics, 14(3), 033033. doi:10.1088/1367-2630/14/3/033033Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: A dual approach. Physica A: Statistical Mechanics and its Applications, 369(2), 853-866. doi:10.1016/j.physa.2005.12.063Jiang, B. (2009). Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science, 23(7), 823-837. doi:10.1080/13658810802022822Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170-1182. doi:10.1086/228631Boldi, P., & Vigna, S. (2014). Axioms for Centrality. Internet Mathematics, 10(3-4), 222-262. doi:10.1080/15427951.2013.865686Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35. doi:10.2307/3033543Brandes, U. (2001). A faster algorithm for betweenness centrality*. The Journal of Mathematical Sociology, 25(2), 163-177. doi:10.1080/0022250x.2001.9990249Haveliwala, T. H. (2003). Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering, 15(4), 784-796. doi:10.1109/tkde.2003.1208999Berkhin, P. (2005). A Survey on PageRank Computing. Internet Mathematics, 2(1), 73-120. doi:10.1080/15427951.2005.10129098García, E., Pedroche, F., & Romance, M. (2013). On the localization of the personalized PageRank of complex networks. Linear Algebra and its Applications, 439(3), 640-652. doi:10.1016/j.laa.2012.10.051Langville, A., & Meyer, C. (2004). Deeper Inside PageRank. Internet Mathematics, 1(3), 335-380. doi:10.1080/15427951.2004.10129091Bianchini, M., Gori, M., & Scarselli, F. (2005). Inside PageRank. ACM Transactions on Internet Technology, 5(1), 92-128. doi:10.1145/1052934.1052938Migallón, H., Migallón, V., Palomino, J. A., & Penadés, J. (2018). A heuristic relaxed extrapolated algorithm for accelerating PageRank. Advances in Engineering Software, 120, 88-95. doi:10.1016/j.advengsoft.2016.01.024Agryzkov, T., Oliver, J. L., Tortosa, L., & Vicent, J. F. (2012). An algorithm for ranking the nodes of an urban network based on the concept of PageRank vector. Applied Mathematics and Computation, 219(4), 2186-2193. doi:10.1016/j.amc.2012.08.064Agryzkov, T., Tortosa, L., & Vicent, J. F. (2016). New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks. Applied Mathematics and Computation, 291, 14-29. doi:10.1016/j.amc.2016.06.036Agryzkov, T., Tortosa, L., Vicent, J. F., & Wilson, R. (2017). A centrality measure for urban networks based on the eigenvector centrality concept. Environment and Planning B: Urban Analytics and City Science, 46(4), 668-689. doi:10.1177/2399808317724444Conti, M., & Kumar, M. (2010). Opportunities in Opportunistic Computing. Computer, 43(1), 42-50. doi:10.1109/mc.2010.19Zhang, Y., Song, L., Jiang, C., Tran, N. H., Dawy, Z., & Han, Z. (2017). A Social-Aware Framework for Efficient Information Dissemination in Wireless Ad Hoc Networks. IEEE Communications Magazine, 55(1), 174-179. doi:10.1109/mcom.2017.1600029cmBoccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., … Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1-122. doi:10.1016/j.physrep.2014.07.001Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research, 33(4), 452-473. doi:10.1086/jar.33.4.362975

    Ranking places in attributed temporal urban mobility networks

    Get PDF
    Drawing on the recent advances in complex network theory, urban mobility flow patterns, typically encoded as origin-destination (OD) matrices, can be represented as weighted directed graphs, with nodes denoting city locations and weighted edges the number of trips between them. Such a graph can further be augmented by node attributes denoting the various socio-economic characteristics at a particular location in the city. In this paper, we study the spatio-temporal characteristics of “hotspots” of different types of socio-economic activities as characterized by recently developed attribute-augmented network centrality measures within the urban OD network. The workflow of the proposed paper comprises the construction of temporal OD networks using two custom data sets on urban mobility in Rome and London, the addition of socio-economic activity attributes to the OD network nodes, the computation of network centrality measures, the identification of “hotspots” and, finally, the visualization and analysis of measures of their spatio-temporal heterogeneity. Our results show structural similarities and distinctions between the spatial patterns of different types of human activity in the two cities. Our approach produces simple indicators thus opening up opportunities for practitioners to develop tools for real-time monitoring and visualization of interactions between mobility and economic activity in cities.This work is supported by the Spanish Government, Ministerio de Economía y Competividad, grant number TIN2017-84821-P. It is also funded by the EU H2020 programme under Grant Agreement No. 780754, “Track & Know”

    Nonlocal PageRank

    Full text link
    In this work we introduce and study a nonlocal version of the PageRank. In our approach, the random walker explores the graph using longer excursions than just moving between neighboring nodes. As a result, the corresponding ranking of the nodes, which takes into account a \textit{long-range interaction} between them, does not exhibit concentration phenomena typical of spectral rankings which take into account just local interactions. We show that the predictive value of the rankings obtained using our proposals is considerably improved on different real world problems

    Using Incomplete Information for Complete Weight Annotation of Road Networks -- Extended Version

    Full text link
    We are witnessing increasing interests in the effective use of road networks. For example, to enable effective vehicle routing, weighted-graph models of transportation networks are used, where the weight of an edge captures some cost associated with traversing the edge, e.g., greenhouse gas (GHG) emissions or travel time. It is a precondition to using a graph model for routing that all edges have weights. Weights that capture travel times and GHG emissions can be extracted from GPS trajectory data collected from the network. However, GPS trajectory data typically lack the coverage needed to assign weights to all edges. This paper formulates and addresses the problem of annotating all edges in a road network with travel cost based weights from a set of trips in the network that cover only a small fraction of the edges, each with an associated ground-truth travel cost. A general framework is proposed to solve the problem. Specifically, the problem is modeled as a regression problem and solved by minimizing a judiciously designed objective function that takes into account the topology of the road network. In particular, the use of weighted PageRank values of edges is explored for assigning appropriate weights to all edges, and the property of directional adjacency of edges is also taken into account to assign weights. Empirical studies with weights capturing travel time and GHG emissions on two road networks (Skagen, Denmark, and North Jutland, Denmark) offer insight into the design properties of the proposed techniques and offer evidence that the techniques are effective.Comment: This is an extended version of "Using Incomplete Information for Complete Weight Annotation of Road Networks," which is accepted for publication in IEEE TKD

    Improving water network management by efficient division into supply clusters

    Full text link
    El agua es un recurso escaso que, como tal, debe ser gestionado de manera eficiente. Así, uno de los propósitos de dicha gestión debiera ser la reducción de pérdidas de agua y la mejora del funcionamiento del abastecimiento. Para ello, es necesario crear un marco de trabajo basado en un conocimiento profundo de la redes de distribución. En los casos reales, llegar a este conocimiento es una tarea compleja debido a que estos sistemas pueden estar formados por miles de nodos de consumo, interconectados entre sí también por miles de tuberías y sus correspondientes elementos de alimentación. La mayoría de las veces, esas redes no son el producto de un solo proceso de diseño, sino la consecuencia de años de historia que han dado respuesta a demandas de agua continuamente crecientes con el tiempo. La división de la red en lo que denominaremos clusters de abastecimiento, permite la obtención del conocimiento hidráulico adecuado para planificar y operar las tareas de gestión oportunas, que garanticen el abastecimiento al consumidor final. Esta partición divide las redes de distribución en pequeñas sub-redes, que son virtualmente independientes y están alimentadas por un número prefijado de fuentes. Esta tesis propone un marco de trabajo adecuado en el establecimiento de vías eficientes tanto para dividir la red de abastecimiento en sectores, como para desarrollar nuevas actividades de gestión, aprovechando esta estructura dividida. La propuesta de desarrollo de cada una de estas tareas será mediante el uso de métodos kernel y sistemas multi-agente. El spectral clustering y el aprendizaje semi-supervisado se mostrarán como métodos con buen comportamiento en el paradigma de encontrar una red sectorizada que necesite usar el número mínimo de válvulas de corte. No obstante, sus algoritmos se vuelven lentos (a veces infactibles) dividiendo una red de abastecimiento grande.Herrera Fernández, AM. (2011). Improving water network management by efficient division into supply clusters [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11233Palanci

    Complex network models, graph mining and information extraction from real-world systems

    Get PDF
    The development of small-world networks has significantly changed and extended the research directions of graph theory, a part of mathematics which provides the theoretical toolkit for the study of complex systems. Alongside this, research on mining graph and network data has been increasingly growing over the past few years, and it has become the most promising approach for extracting knowledge from relational data and investigating complex systems. The goal of this dissertation is to present the Author's work which focusing on the development and application of network models and graph mining tools for real-world problems

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)
    corecore