23,242 research outputs found

    An algorithm for list decoding number field codes

    Get PDF
    We present an algorithm for list decoding codewords of algebraic number field codes in polynomial time. This is the first explicit procedure for decoding number field codes whose construction were previously described by Lenstra [12] and Guruswami [8]. We rely on a new algorithm for computing the Hermite normal form of the basis of an OK -module due to Biasse and Fieker [2] where OK is the ring of integers of a number field K

    Subspace polynomials and list decoding of Reed-Solomon codes

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2007.Includes bibliographical references (p. 29-31).We show combinatorial limitations on efficient list decoding of Reed-Solomon codes beyond the Johnson and Guruswami-Sudan bounds [Joh62, Joh63, GS99]. In particular, we show that for any ... , there exist arbitrarily large fields ... * Existence: there exists a received word ... that agrees with a super-polynomial number of distinct degree K polynomials on ... points each; * Explicit: there exists a polynomial time constructible received word ... that agrees with a super-polynomial number of distinct degree K polynomials, on ... points each. Ill both cases, our results improve upon the previous state of the art, which was , NM/6 for the existence case [JH01], and a ... for the explicit one [GR,05b]. Furthermore, for 6 close to 1 our bound approaches the Guruswami-Sudan bound (which is ... ) and rules out the possibility of extending their efficient RS list decoding algorithm to any significantly larger decoding radius. Our proof method is surprisingly simple. We work with polynomials that vanish on subspaces of an extension field viewed as a vector space over the base field.(cont.) These subspace polynomials are a subclass of linearized polynomials that were studied by Ore [Ore33, Ore34] in the 1930s and by coding theorists. For us their main attraction is their sparsity and abundance of roots. We also complement our negative results by giving a list decoding algorithm for linearized polynomials beyond the Johnson-Guruswami-Sudan bounds.by Swastik Kopparty.S.M

    List decoding of repeated codes

    Get PDF
    Assuming that we have a soft-decision list decoding algorithm of a linear code, a new hard-decision list decoding algorithm of its repeated code is proposed in this article. Although repeated codes are not used for encoding data, due to their parameters, we show that they have a good performance with this algorithm. We compare, by computer simulations, our algorithm for the repeated code of a Reed-Solomon code against a decoding algorithm of a Reed-Solomon code. Finally, we estimate the decoding capability of the algorithm for Reed-Solomon codes and show that performance is somewhat better than our estimates

    Algebraic List-decoding of Subspace Codes

    Full text link
    Subspace codes were introduced in order to correct errors and erasures for randomized network coding, in the case where network topology is unknown (the noncoherent case). Subspace codes are indeed collections of subspaces of a certain vector space over a finite field. The Koetter-Kschischang construction of subspace codes are similar to Reed-Solomon codes in that codewords are obtained by evaluating certain (linearized) polynomials. In this paper, we consider the problem of list-decoding the Koetter-Kschischang subspace codes. In a sense, we are able to achieve for these codes what Sudan was able to achieve for Reed-Solomon codes. In order to do so, we have to modify and generalize the original Koetter-Kschischang construction in many important respects. The end result is this: for any integer LL, our list-LL decoder guarantees successful recovery of the message subspace provided that the normalized dimension of the error is at most L−L(L+1)2R L - \frac{L(L+1)}{2}R where RR is the normalized packet rate. Just as in the case of Sudan's list-decoding algorithm, this exceeds the previously best known error-correction radius 1−R1-R, demonstrated by Koetter and Kschischang, for low rates RR

    Optimal rate list decoding via derivative codes

    Full text link
    The classical family of [n,k]q[n,k]_q Reed-Solomon codes over a field \F_q consist of the evaluations of polynomials f \in \F_q[X] of degree <k< k at nn distinct field elements. In this work, we consider a closely related family of codes, called (order mm) {\em derivative codes} and defined over fields of large characteristic, which consist of the evaluations of ff as well as its first m−1m-1 formal derivatives at nn distinct field elements. For large enough mm, we show that these codes can be list-decoded in polynomial time from an error fraction approaching 1−R1-R, where R=k/(nm)R=k/(nm) is the rate of the code. This gives an alternate construction to folded Reed-Solomon codes for achieving the optimal trade-off between rate and list error-correction radius. Our decoding algorithm is linear-algebraic, and involves solving a linear system to interpolate a multivariate polynomial, and then solving another structured linear system to retrieve the list of candidate polynomials ff. The algorithm for derivative codes offers some advantages compared to a similar one for folded Reed-Solomon codes in terms of efficient unique decoding in the presence of side information.Comment: 11 page

    Decoding Reed-Muller codes over product sets

    Get PDF
    We give a polynomial time algorithm to decode multivariate polynomial codes of degree dd up to half their minimum distance, when the evaluation points are an arbitrary product set SmS^m, for every d<∣S∣d < |S|. Previously known algorithms can achieve this only if the set SS has some very special algebraic structure, or if the degree dd is significantly smaller than ∣S∣|S|. We also give a near-linear time randomized algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d0d 0. Our result gives an mm-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.Comment: 25 pages, 0 figure

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs
    • …
    corecore