92 research outputs found

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques

    An analytics-based heuristic decomposition of a bilevel multiple-follower cutting stock problem

    Get PDF
    This paper presents a new class of multiple-follower bilevel problems and a heuristic approach to solving them. In this new class of problems, the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. We show that current approaches for solving multiple-follower problems are unsuitable for our new class of problems and instead we propose a novel analytics-based heuristic decomposition approach. This approach uses Monte Carlo simulation and k-medoids clustering to reduce the bilevel problem to a single level, which can then be solved using integer programming techniques. The examples presented show that our approach produces better solutions and scales up better than the other approaches in the literature. Furthermore, for large problems, we combine our approach with the use of self-organising maps in place of k-medoids clustering, which significantly reduces the clustering times. Finally, we apply our approach to a real-life cutting stock problem. Here a forest harvesting problem is reformulated as a multiple-follower bilevel problem and solved using our approachThis publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/228

    Multilevel decision-making: A survey

    Full text link
    © 2016 Elsevier Inc. All rights reserved. Multilevel decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a multiple level hierarchy. Significant efforts have been devoted to understanding the fundamental concepts and developing diverse solution algorithms associated with multilevel decision-making by researchers in areas of both mathematics/computer science and business areas. Researchers have emphasized the importance of developing a range of multilevel decision-making techniques to handle a wide variety of management and optimization problems in real-world applications, and have successfully gained experience in this area. It is thus vital that a high quality, instructive review of current trends should be conducted, not only of the theoretical research results but also the practical developments in multilevel decision-making in business. This paper systematically reviews up-to-date multilevel decision-making techniques and clusters related technique developments into four main categories: bi-level decision-making (including multi-objective and multi-follower situations), tri-level decision-making, fuzzy multilevel decision-making, and the applications of these techniques in different domains. By providing state-of-the-art knowledge, this survey will directly support researchers and practical professionals in their understanding of developments in theoretical research results and applications in relation to multilevel decision-making techniques

    Solving a type of biobjective bilevel programming problem using NSGA-II

    Get PDF
    AbstractThis paper considers a type of biobjective bilevel programming problem, which is derived from a single objective bilevel programming problem via lifting the objective function at the lower level up to the upper level. The efficient solutions to such a model can be considered as candidates for the after optimization bargaining between the decision-makers at both levels who retain the original bilevel decision-making structure. We use a popular multiobjective evolutionary algorithm, NSGA-II, to solve this type of problem. The algorithm is tested on some small-dimensional benchmark problems from the literature. Computational results show that the NSGA-II algorithm is capable of solving the problems efficiently and effectively. Hence, it provides a promising visualization tool to help the decision-makers find the best trade-off in bargaining

    Fuzzy Bilevel Optimization

    Get PDF
    In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems. In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.:1 Introduction 1 1.1 Why optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fuzziness as a concept . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Bilevel problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries 11 2.1 Fuzzy sets and fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 11 2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Fuzzy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fuzzy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3 Optimization problem with fuzzy objective 19 3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Local optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . 25 4 Linear optimization with fuzzy objective 27 4.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Membership function value . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Special case of triangular fuzzy numbers . . . . . . . . . . . . 36 4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 5 Optimality conditions 47 5.1 Differentiable fuzzy optimization problem . . . . . . . . . . .. . . . 48 5.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . .. 49 5.1.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Nondifferentiable fuzzy optimization problem . . . . . . . . . . . . 51 5.2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . 52 5.2.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Fuzzy linear optimization problem over fuzzy polytope 59 6.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 The fuzzy polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.3 Formulation and solution method . . . . . . . . . . . . . . . . . . .. . 65 6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Bilevel optimization with fuzzy objectives 73 7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 7.3 Yager index approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Membership function approach . . . . . . . . . . . . . . . . . . . . . . .78 7.6 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Linear fuzzy bilevel optimization (with fuzzy objectives and constraints) 87 8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9 Conclusions 95 Bibliography 9

    Analytics-based decomposition of a class of bilevel problems

    Get PDF
    This paper proposes a new class of multi-follower bilevel problems. In this class the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. The new class is formalised and compared with existing problems in the literature. We show that approaches currently in use for solving multi-follower problems are unsuitable for this class. Evolutionary algorithms can be used, but these are computationally intensive and do not scale up well. Instead we propose an analytics-based decomposition approach. Two example problems are solved using our approach and two evolutionary algorithms, and the decomposition approach produces much better and faster results as the problem size increases

    Bi- and Multi Level Game Theoretic Approaches in Mechanical Design

    Get PDF
    This dissertation presents a game theoretic approach to solve bi and multi-level optimization problems arising in mechanical design. Toward this end, Stackelberg (leader-follower), Nash, as well as cooperative game formulations are considered. To solve these problems numerically, a sensitivity based approach is developed in this dissertation. Although game theoretic methods have been used by several authors for solving multi-objective problems, numerical methods and the applications of extensive games to engineering design problems are very limited. This dissertation tries to fill this gap by developing the possible scenarios for multi-objective problems and develops new numerical approaches for solving them. This dissertation addresses three main problems. The first problem addresses the formulation and solution of an optimization problem with two objective functions using the Stackelberg approach. A computational procedure utilizing sensitivity of follower\u27s solution to leader\u27s choices is presented to solve the bi-level optimization problem numerically. Two mechanical design problems including flywheel design and design of high speed four-bar mechanism are modeled based on Stackelberg game. The partitioning of variables between the leader and follower problem is discussed, and a variable partitioning metric is introduced to compare various variable partitions. The second problem this dissertation focuses on is modeling the multi-objective optimization problem (MOP) as a Nash game. A computational procedure utilizing sensitivity based approach is also presented to find Nash solution of the MOP numerically. Some test problems including mathematical problems and mechanical design problems are discussed to validate the results. In a Nash game, the players of the game are at the same level unlike the Stackelberg formulation in which the players are at different levels of importance. The third problem this dissertation addresses deals with hierarchical modeling of multi-level optimization problems and modeling of decentralized bi-level multi-objective problems. Generalizations of the basic Stackelberg model to consider cases with multiple leaders and/or multiple followers are missing from the literature. Three mathematical problems are solved to show the application of the algorithm developed in this research for solving hierarchical as well as decentralized problems
    • …
    corecore