1,758 research outputs found

    Generalized Finite Algorithms for Constructing Hermitian Matrices with Prescribed Diagonal and Spectrum

    Get PDF
    In this paper, we present new algorithms that can replace the diagonal entries of a Hermitian matrix by any set of diagonal entries that majorize the original set without altering the eigenvalues of the matrix. They perform this feat by applying a sequence of (N-1) or fewer plane rotations, where N is the dimension of the matrix. Both the Bendel-Mickey and the Chan-Li algorithms are special cases of the proposed procedures. Using the fact that a positive semidefinite matrix can always be factored as \mtx{X^\adj X}, we also provide more efficient versions of the algorithms that can directly construct factors with specified singular values and column norms. We conclude with some open problems related to the construction of Hermitian matrices with joint diagonal and spectral properties

    Designing structured tight frames via an alternating projection method

    Get PDF
    Tight frames, also known as general Welch-bound- equality sequences, generalize orthonormal systems. Numerous applications - including communications, coding, and sparse approximation- require finite-dimensional tight frames that possess additional structural properties. This paper proposes an alternating projection method that is versatile enough to solve a huge class of inverse eigenvalue problems (IEPs), which includes the frame design problem. To apply this method, one needs only to solve a matrix nearness problem that arises naturally from the design specifications. Therefore, it is the fast and easy to develop versions of the algorithm that target new design problems. Alternating projection will often succeed even if algebraic constructions are unavailable. To demonstrate that alternating projection is an effective tool for frame design, the paper studies some important structural properties in detail. First, it addresses the most basic design problem: constructing tight frames with prescribed vector norms. Then, it discusses equiangular tight frames, which are natural dictionaries for sparse approximation. Finally, it examines tight frames whose individual vectors have low peak-to-average-power ratio (PAR), which is a valuable property for code-division multiple-access (CDMA) applications. Numerical experiments show that the proposed algorithm succeeds in each of these three cases. The appendices investigate the convergence properties of the algorithm

    Finite-step algorithms for constructing optimal CDMA signature sequences

    Get PDF
    A description of optimal sequences for direct-spread code-division multiple access (DS-CDMA) is a byproduct of recent characterizations of the sum capacity. This paper restates the sequence design problem as an inverse singular value problem and shows that the problem can be solved with finite-step algorithms from matrix theory. It proposes a new one-sided algorithm that is numerically stable and faster than previous methods

    Frame completions for optimally robust reconstruction

    Full text link
    In information fusion, one is often confronted with the following problem: given a preexisting set of measurements about an unknown quantity, what new measurements should one collect in order to accomplish a given fusion task with optimal accuracy and efficiency. We illustrate just how difficult this problem can become by considering one of its more simple forms: when the unknown quantity is a vector in a Hilbert space, the task itself is vector reconstruction, and the measurements are linear functionals, that is, inner products of the unknown vector with given measurement vectors. Such reconstruction problems are the subject of frame theory. Here, we can measure the quality of a given frame by the average reconstruction error induced by noisy measurements; the mean square error is known to be the trace of the inverse of the frame operator. We discuss preliminary results which help indicate how to add new vectors to a given frame in order to reduce this mean square error as much as possible
    • …
    corecore