949 research outputs found

    First International Diagnosis Competition - DXC'09

    Get PDF
    A framework to compare and evaluate diagnosis algorithms (DAs) has been created jointly by NASA Ames Research Center and PARC. In this paper, we present the first concrete implementation of this framework as a competition called DXC 09. The goal of this competition was to evaluate and compare DAs in a common platform and to determine a winner based on diagnosis results. 12 DAs (model-based and otherwise) competed in this first year of the competition in 3 tracks that included industrial and synthetic systems. Specifically, the participants provided algorithms that communicated with the run-time architecture to receive scenario data and return diagnostic results. These algorithms were run on extended scenario data sets (different from sample set) to compute a set of pre-defined metrics. A ranking scheme based on weighted metrics was used to declare winners. This paper presents the systems used in DXC 09, description of faults and data sets, a listing of participating DAs, the metrics and results computed from running the DAs, and a superficial analysis of the results

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure

    A Final Determination of the Complexity of Current Formulations of Model-Based Diagnosis (Or Maybe Not Final?)

    Get PDF
    There are three parts to this paper. First, I present what I hope is a conclusive, worst-case, complexity analysis of two well-known formulations of the Minimal Diagnosis problem — those of [Reiter 87] and [Reggia et al., 85]. I then show that Reiter\u27s conflict-sets solution to the problem decomposes the single exponential problem into two problems, each exponential, that need be solved sequentially. From a worst case perspective, this only amounts to a factor of two, in which case I see no reason to prefer it over a simple generate-and-test approach. This is only emphasized with the results of the third part of the paper. Here I argue for a different perspective on algorithms, that of expected, rather than worst-case performance. From that point of view, a sequence of two exponential algorithms has lesser probability to finish early than a single such algorithm. I show that the straightforward generate-and-test approach may in fact be somewhat attractive as it has high probability to conclude in a polynomial time, given a random problem instance
    • …
    corecore