2,102 research outputs found

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Underdetermined-order recursive least-squares adaptive filtering: The concept and algorithms

    No full text
    Published versio

    Phase-coherent lightwave communications with frequency combs

    Get PDF
    Fiber-optical networks are a crucial telecommunication infrastructure in society. Wavelength division multiplexing allows for transmitting parallel data streams over the fiber bandwidth, and coherent detection enables the use of sophisticated modulation formats and electronic compensation of signal impairments. In the future, optical frequency combs may replace multiple lasers used for the different wavelength channels. We demonstrate two novel signal processing schemes that take advantage of the broadband phase coherence of optical frequency combs. This approach allows for a more efficient estimation and compensation of optical phase noise in coherent communication systems, which can significantly simplify the signal processing or increase the transmission performance. With further advances in space division multiplexing and chip-scale frequency comb sources, these findings pave the way for compact energy-efficient optical transceivers.Comment: 17 pages, 9 figure

    Performance of the wavelet-transform-neural network based receiver for DPIM in diffuse indoor optical wireless links in presence of artificial light interference

    Get PDF
    Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both domains. Applying these signal processing tools for channel compensation and noise reduction can provide an enhanced performance compared to the traditional tools. In this paper, the slot error rate (SER) performance of digital pulse interval modulation (DPIM) in diffuse indoor optical wireless (OW) links subjected to the artificial light interference (ALI) is reported with new receiver structure based on the discrete WT (DWT) and ANN. Simulation results show that the DWT-ANN based receiver is very effective in reducing the effect of multipath induced inter-symbol interference (ISI) and ALI

    A 10-Gb/s two-dimensional eye-opening monitor in 0.13-μm standard CMOS

    Get PDF
    An eye-opening monitor (EOM) architecture that can capture a two-dimensional (2-D) map of the eye diagram of a high-speed data signal has been developed. Two single-quadrant phase rotators and one digital-to-analog converter (DAC) are used to generate rectangular masks with variable sizes and aspect ratios. Each mask is overlapped with the received eye diagram and the number of signal transitions inside the mask is recorded as error. The combination of rectangular masks with the same error creates error contours that overall provide a 2-D map of the eye. The authors have implemented a prototype circuit in 0.13-μm standard CMOS technology that operates up to 12.5 Gb/s at 1.2-V supply. The EOM maps the input eye to a 2-D error diagram with up to 68-dB mask error dynamic range. The left and right halves of the eyes are monitored separately to capture horizontally asymmetric eyes. The chip consumes 330 mW and operates reliably with supply voltages as low as 1 V at 10 Gb/s. The authors also present a detailed analysis that verifies if the measurements are in good agreement with the expected results

    An investigation into the performance of a power-of-two coefficient transversal equalizer in a 34Mbit/s QPSK digital radio during frequency-selective fading conditions

    Get PDF
    Bibliography: leaves 82-91.Under certain atmospheric conditions, multipath propagation can occur. The interaction of radio waves arriving at a receiver, having travelled via paths of differing length, results in the phenomenon of frequency-selective fading. This phenomenon manifests as a notch in the received spectrum and causes a severe degradation in the performance of a digital radio system. As the total power in the received bandwidth may be unaffected, the Automatic Gain Control is not able to correct for this distortion, and so other methods are required. The dissertation commences with a summary of the phenomenon of multipath as this provides the context for the investigations which follow. The adaptive equalizer was developed to combat the distortion introduced by frequency-selective fading. It achieves this by applying an estimate of the inverse of the distorting channel's transfer function. The theory on adaptive equalizers has been well established, and a summary of this theory is presented in the form of Wiener Filter theory and the Wiener-Hopf equations. An adaptive equalizer located in a 34MBit/s QPSK digital radio is required to operate at very high speed, and its digital hardware implementation is not a trivial task. In order to reduce the cost and complexity, a compromise was proposed. If the tap weights of the equalizer could be represented by power-of-two binary numbers, the equalizer circuitry can be dramatically simplified. The aim of the dissertation was to investigate the performance of this simplified equalizer structure and to determine whether a power-of-two equalizer was a viable consideration

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis
    corecore