2,285 research outputs found

    Evaluation of peak-picking algorithms for protein mass spectrometry

    Get PDF
    Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves

    Informed baseline subtraction of proteomic mass spectrometry data aided by a novel sliding window algorithm

    Get PDF
    Proteomic matrix-assisted laser desorption/ionisation (MALDI) linear time-of-flight (TOF) mass spectrometry (MS) may be used to produce protein profiles from biological samples with the aim of discovering biomarkers for disease. However, the raw protein profiles suffer from several sources of bias or systematic variation which need to be removed via pre-processing before meaningful downstream analysis of the data can be undertaken. Baseline subtraction, an early pre-processing step that removes the non-peptide signal from the spectra, is complicated by the following: (i) each spectrum has, on average, wider peaks for peptides with higher mass-to-charge ratios (m/z), and (ii) the time-consuming and error-prone trial-and-error process for optimising the baseline subtraction input arguments. With reference to the aforementioned complications, we present an automated pipeline that includes (i) a novel `continuous' line segment algorithm that efficiently operates over data with a transformed m/z-axis to remove the relationship between peptide mass and peak width, and (ii) an input-free algorithm to estimate peak widths on the transformed m/z scale. The automated baseline subtraction method was deployed on six publicly available proteomic MS datasets using six different m/z-axis transformations. Optimality of the automated baseline subtraction pipeline was assessed quantitatively using the mean absolute scaled error (MASE) when compared to a gold-standard baseline subtracted signal. Near-optimal baseline subtraction was achieved using the automated pipeline. The advantages of the proposed pipeline include informed and data specific input arguments for baseline subtraction methods, the avoidance of time-intensive and subjective piecewise baseline subtraction, and the ability to automate baseline subtraction completely. Moreover, individual steps can be adopted as stand-alone routines.Comment: 50 pages, 19 figure

    Peaks detection and alignment for mass spectrometry data

    Get PDF
    The goal of this paper is to review existing methods for protein mass spectrometry data analysis, and to present a new methodology for automatic extraction of significant peaks (biomarkers). For the pre-processing step required for data from MALDI-TOF or SELDI- TOF spectra, we use a purely nonparametric approach that combines stationary invariant wavelet transform for noise removal and penalized spline quantile regression for baseline correction. We further present a multi-scale spectra alignment technique that is based on identification of statistically significant peaks from a set of spectra. This method allows one to find common peaks in a set of spectra that can subsequently be mapped to individual proteins. This may serve as useful biomarkers in medical applications, or as individual features for further multidimensional statistical analysis. MALDI-TOF spectra obtained from serum samples are used throughout the paper to illustrate the methodology

    Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset

    Get PDF
    Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics

    Mining whole sample mass spectrometry proteomics data for biomarkers: an overview

    No full text
    In this paper we aim to provide a concise overview of designing and conducting an MS proteomics experiment in such a way as to allow statistical analysis that may lead to the discovery of novel biomarkers. We provide a summary of the various stages that make up such an experiment, highlighting the need for experimental goals to be decided upon in advance. We discuss issues in experimental design at the sample collection stage, and good practise for standardising protocols within the proteomics laboratory. We then describe approaches to the data mining stage of the experiment, including the processing steps that transform a raw mass spectrum into a useable form. We propose a permutation-based procedure for determining the significance of reported error rates. Finally, because of its general advantages in speed and cost, we suggest that MS proteomics may be a good candidate for an early primary screening approach to disease diagnosis, identifying areas of risk and making referrals for more specific tests without necessarily making a diagnosis in its own right. Our discussion is illustrated with examples drawn from experiments on bovine blood serum conducted in the Centre for Proteomic Research (CPR) at Southampton University

    MALDI-ToF mass spectrometry biomarker profiling via multivariate data analysis application in the biopharmaceutical bioprocessing industry

    Get PDF
    PhD ThesisMatrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS) is a technique by which protein profiles can be rapidly produced from biological samples. Proteomic profiling and biomarker identification using MALDI-ToF MS have been utilised widely in microbiology for bacteria identification and in clinical proteomics for disease-related biomarker discovery. To date, the benefits of MALDI-ToF MS have not been realised in the area of mammalian cell culture during bioprocessing. This thesis explores the approach of ‘intact-cell’ MALDI-ToF MS (ICM-MS) combined with projection to latent structures – discriminant analysis (PLS-DA), to discriminate between mammalian cell lines during bioprocessing. Specifically, the industrial collaborator, Lonza Biologics is interested in adopting this approach to discriminate between IgG monoclonal antibody producing Chinese hamster ovaries (CHO) cell lines based on their productivities and identify protein biomarkers which are associated with the cell line productivities. After classifying cell lines into two categories (high/low producers; Hs/Ls), it is hypothesised that Hs and Ls CHO cells exhibit different metabolic profiles and hence differences in phenotypic expression patterns will be observed. The protein expression patterns correlate to the productivities of the cell lines, and introduce between-class variability. The chemometric method of PLS-DA can use this variability to classify the cell lines as Hs or Ls. A number of differentially expressed proteins were matched and identified as biomarkers after a SwissProt/TrEMBL protein database search. The identified proteins revealed that proteins involved in biological processes such as protein biosynthesis, protein folding, glycolysis and cytoskeleton architecture were upregulated in Hs. This study demonstrates that ICM-MS combined with PLS-DA and a protein database search can be a rapid and valuable tool for biomarker discovery in the bioprocessing industry. It may help in providing clues to potential cell genetic engineering targets as well as a tool in process development in the bioprocessing industry. With the completion of the sequencing of the CHO genome, this study provides a foundation for rapid biomarker profiling of CHO cell lines in culture during recombinant protein manufacturing.Lonza Biologics

    Sparse Proteomics Analysis - A compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

    Get PDF
    Background: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a particular disease. Machine learning algorithms are needed to (a) identify these discriminating features and (b) classify unknown spectra based on this feature set. Since the acquired data is usually noisy, the algorithms should be robust against noise and outliers, while the identified feature set should be as small as possible. Results: We present a new algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed sensing that allows us to identify a minimal discriminating set of features from mass spectrometry data-sets. We show (1) how our method performs on artificial and real-world data-sets, (2) that its performance is competitive with standard (and widely used) algorithms for analyzing proteomics data, and (3) that it is robust against random and systematic noise. We further demonstrate the applicability of our algorithm to two previously published clinical data-sets

    MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation

    Get PDF
    Stochastic Bernstein (SB) approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter sigma(x) that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned ( for constant sigma) or tuned with evolutionary computation ( for sigma( x)). Copyright (C) 2006 Hindawi Publishing Corporation. All rights reserved

    MALDI-TOF MS Data Processing Using Wavelets, Splines and Clustering Techniques.

    Get PDF
    Mass Spectrometry, especially matrix assisted laser desorption/ionization (MALDI) time of flight (TOF), is emerging as a leading technique in the proteomics revolution. It can be used to find disease-related protein patterns in mixtures of proteins derived from easily obtained samples. In this paper, a novel algorithm for MALDI-TOF MS data processing is developed. The software design includes the application of splines for data smoothing and baseline correction, wavelets for adaptive denoising, multivariable statistics techniques such as clustering analysis, and signal processing techniques to evaluate the complicated biological signals. A MatLab implementation shows the processing steps consecutively including step-interval unification, adaptive wavelet denoising, baseline correction, normalization, and peak detection and alignment for biomarker discovery
    corecore