29 research outputs found

    Composite Finite Elements for Trabecular Bone Microstructures

    Get PDF
    In many medical and technical applications, numerical simulations need to be performed for objects with interfaces of geometrically complex shape. We focus on the biomechanical problem of elasticity simulations for trabecular bone microstructures. The goal of this dissertation is to develop and implement an efficient simulation tool for finite element simulations on such structures, so-called composite finite elements. We will deal with both the case of material/void interfaces (complicated domains) and the case of interfaces between different materials (discontinuous coefficients). In classical finite element simulations, geometric complexity is encoded in tetrahedral and typically unstructured meshes. Composite finite elements, in contrast, encode geometric complexity in specialized basis functions on a uniform mesh of hexahedral structure. Other than alternative approaches (such as e.g. fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes, and extended finite element methods), the composite finite elements are tailored to geometry descriptions by 3D voxel image data and use the corresponding voxel grid as computational mesh, without introducing additional degrees of freedom, and thus making use of efficient data structures for uniformly structured meshes. The composite finite element method for complicated domains goes back to Wolfgang Hackbusch and Stefan Sauter and restricts standard affine finite element basis functions on the uniformly structured tetrahedral grid (obtained by subdivision of each cube in six tetrahedra) to an approximation of the interior. This can be implemented as a composition of standard finite element basis functions on a local auxiliary and purely virtual grid by which we approximate the interface. In case of discontinuous coefficients, the same local auxiliary composition approach is used. Composition weights are obtained by solving local interpolation problems for which coupling conditions across the interface need to be determined. These depend both on the local interface geometry and on the (scalar or tensor-valued) material coefficients on both sides of the interface. We consider heat diffusion as a scalar model problem and linear elasticity as a vector-valued model problem to develop and implement the composite finite elements. Uniform cubic meshes contain a natural hierarchy of coarsened grids, which allows us to implement a multigrid solver for the case of complicated domains. Besides simulations of single loading cases, we also apply the composite finite element method to the problem of determining effective material properties, e.g. for multiscale simulations. For periodic microstructures, this is achieved by solving corrector problems on the fundamental cells using affine-periodic boundary conditions corresponding to uniaxial compression and shearing. For statistically periodic trabecular structures, representative fundamental cells can be identified but do not permit the periodic approach. Instead, macroscopic displacements are imposed using the same set as before of affine-periodic Dirichlet boundary conditions on all faces. The stress response of the material is subsequently computed only on an interior subdomain to prevent artificial stiffening near the boundary. We finally check for orthotropy of the macroscopic elasticity tensor and identify its axes.Zusammengesetzte finite Elemente fĂŒr trabekulĂ€re Mikrostrukturen in Knochen In vielen medizinischen und technischen Anwendungen werden numerische Simulationen fĂŒr Objekte mit geometrisch komplizierter Form durchgefĂŒhrt. Gegenstand dieser Dissertation ist die Simulation der ElastizitĂ€t trabekulĂ€rer Mikrostrukturen von Knochen, einem biomechanischen Problem. Ziel ist es, ein effizientes Simulationswerkzeug fĂŒr solche Strukturen zu entwickeln, die sogenannten zusammengesetzten finiten Elemente. Wir betrachten dabei sowohl den Fall von Interfaces zwischen Material und Hohlraum (komplizierte Gebiete) als auch zwischen verschiedenen Materialien (unstetige Koeffizienten). In klassischen Finite-Element-Simulationen wird geometrische KomplexitĂ€t typischerweise in unstrukturierten Tetraeder-Gittern kodiert. Zusammengesetzte finite Elemente dagegen kodieren geometrische KomplexitĂ€t in speziellen Basisfunktionen auf einem gleichförmigen WĂŒrfelgitter. Anders als alternative AnsĂ€tze (wie zum Beispiel fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes und extended finite element methods) sind die zusammengesetzten finiten Elemente zugeschnitten auf die Geometriebeschreibung durch dreidimensionale Bilddaten und benutzen das zugehörige Voxelgitter als Rechengitter, ohne zusĂ€tzliche Freiheitsgrade einzufĂŒhren. Somit können sie effiziente Datenstrukturen fĂŒr gleichförmig strukturierte Gitter ausnutzen. Die Methode der zusammengesetzten finiten Elemente geht zurĂŒck auf Wolfgang Hackbusch und Stefan Sauter. Man schrĂ€nkt dabei ĂŒbliche affine Finite-Element-Basisfunktionen auf gleichförmig strukturierten Tetraedergittern (die man durch Unterteilung jedes WĂŒrfels in sechs Tetraeder erhĂ€lt) auf das approximierte Innere ein. Dies kann implementiert werden durch das Zusammensetzen von Standard-Basisfunktionen auf einem lokalen und rein virtuellen Hilfsgitter, durch das das Interface approximiert wird. Im Falle unstetiger Koeffizienten wird die gleiche lokale Hilfskonstruktion verwendet. Gewichte fĂŒr das Zusammensetzen erhĂ€lt man hier, indem lokale Interpolationsprobleme gelöst werden, wozu zunĂ€chst Kopplungsbedingungen ĂŒber das Interface hinweg bestimmt werden. Diese hĂ€ngen ab sowohl von der lokalen Geometrie des Interface als auch von den (skalaren oder tensorwertigen) Material-Koeffizienten auf beiden Seiten des Interface. Wir betrachten WĂ€rmeleitung als skalares und lineare ElastizitĂ€t als vektorwertiges Modellproblem, um die zusammengesetzten finiten Elemente zu entwickeln und zu implementieren. Gleichförmige WĂŒrfelgitter enthalten eine natĂŒrliche Hierarchie vergröberter Gitter, was es uns erlaubt, im Falle komplizierter Gebiete einen Mehrgitterlöser zu implementieren. Neben Simulationen einzelner LastfĂ€lle wenden wir die zusammengesetzten finiten Elemente auch auf das Problem an, effektive Materialeigenschaften zu bestimmen, etwa fĂŒr mehrskalige Simulationen. FĂŒr periodische Mikrostrukturen wird dies erreicht, indem man Korrekturprobleme auf der Fundamentalzelle löst. DafĂŒr nutzt man affin-periodische Randwerte, die zu uniaxialem Druck oder zu Scherung korrespondieren. In statistisch periodischen trabekulĂ€ren Mikrostrukturen lassen sich ebenfalls Fundamentalzellen identifizieren, sie erlauben jedoch keinen periodischen Ansatz. Stattdessen werden makroskopische Verschiebungen zu denselben affin-periodischen Randbedingungen vorgegeben, allerdings durch Dirichlet-Randwerte auf allen SeitenflĂ€chen. Die Spannungsantwort des Materials wird anschließend nur auf einem inneren Teilbereich berechnet, um kĂŒnstliche Versteifung am Rand zu verhindern. Schließlich prĂŒfen wir den makroskopischen ElastizitĂ€tstensor auf Orthotropie und identifizieren deren Achsen

    Towards a robust Terra

    Get PDF
    In this work mantle convection simulation with Terra is investigated from a numerical point of view, theoretical analysis as well as practical tests are performed. The stability criteria for the numerical formulation of the physical model will be made clear. For the incompressible case and the Terra specific treatment of the anelastic approximation, two inf-sup stable grid modifications are presented, which are both compatible with hanging nodes. For the Q1hQ12h element pair a simple numeric test is introduced to prove the stability for any given grid. For the Q1h Pdisc 12h element pair and 1-regular refinements with hangig nodes an existing general proof can be adopted. The influence of the slip boundary condition is found to be destabilizing. For the incompressible case a cure can be adopted from the literature. The necessary conditions for the expansion of the stability results to the anelastic approximation will be pointed out. A numerical framework is developed in order to measure the effect of different numerical approaches to improve the handling of strongly varying viscosity. The framework is applied to investigate how block smoothers with different block sizes, combination of different block smoothers, different prolongation schemes and semi coarsening influence the multigrid performance. A regression-test framework for Terra will be briefly introduced

    ÉlĂ©ments finis hp adaptatifs avec contraction d’erreur garantie et solveurs multi-niveaux inexacts

    Get PDF
    We propose new practical adaptive refinement algorrithms for conforming hp-finite element approximations of elliptic problems. We consider the use of both exact and inexact solevsr within the established framework of adaptive methods consisting of four concatenated modules : SOLVE, ESTIMATE, MARK, REFINE. The strategies are driven by guaranteed equilibrated flux a posteriori error estimators. Namely, for an inexact approximation obtained by an (arbitrary) iterative algebraic solver, the bounds for the total, the algebraic, and the discretization errors are provided. Our hp-refinement criterion hinges on from solving two local residual problems posed on patches of elements around marked vertices selected by a bulk-chasing criterion. They respectively emulate h-refinement and p-refinement. One particular feature of energy error in the next adaptative loop step with respect to the present one. Numerical experiments are presented to turns out to be excellent, with effectivity indices close to the optimal value of one. In practice, we observe asymptomatic exponential convergence rates, in both the exact and inexact algebraic solver settings. Finally, we also provide a theoretical analysis of the proposed strategies.Nous proposons de nouveaux algorithmes de raffinement adaptatif pour l'approximation des problĂšmes elliptiques par la mĂ©thode des Ă©lĂ©ments finis hp. Nous considĂ©rons des solveurs algĂ©briques exacts puis inexacts au sein du cadre gĂ©nĂ©rique des mĂ©thodes adaptatives consistant en quatre modules concatĂ©nĂ©s: RESOLUTION, ESTIMATION, MARQUAGE, RAFFINEMENT. Les stratĂ©gies reposent sur la construction d'estimateurs d'erreur a posteriori par flux Ă©quilibrĂ©s. Notamment, pour une approximation inexacte obtenue par un solveur algĂ©brique itĂ©ratif (arbitraire), nous prouvons une borne sur l'erreur totale ainsi que sur l'erreur algĂ©brique et l'erreur de discrĂ©tisation. La structure hiĂ©rarchique des espaces d'Ă©lĂ©ments finis hp est cruciale pour obtenir la borne supĂ©rieure sur l'erreur algĂ©brique, ce qui nous permet de formuler des critĂšres d'arrĂȘt prĂ©cis pour le solveur algĂ©brique. Notre critĂšre de raffinement hp repose sur la rĂ©solution de deux problĂšmes rĂ©siduels locaux, posĂ©s sur les macro-Ă©lĂ©ments autour des sommets du maillage qui ont Ă©tĂ© marquĂ©s. Ces derniers sont sĂ©lectionnĂ©s par un critĂšre de type bulk-chasing. Ceux deux problĂšmes rĂ©siduels imitent l'effet du raffinement h et p. Une caractĂ©ristique de notre approche est que nous obtenons une quantitĂ© calculable qui donne une borne garantie sur le rapport entre l'erreur d'Ă©nergie (inconnue) Ă  la prochaine Ă©tape de la boucle adaptative et l'erreur actuelle (i.e. sur le facteur de rĂ©duction d'erreur). Des simulations numĂ©riques sont prĂ©sentĂ©es afin de valider les stratĂ©gies adaptatives. Nous examinons la prĂ©cision de notre borne sur le facteur de rĂ©duction d'erreur qui s'avĂšre ĂȘtre excellente, avec des indices d'efficacitĂ© proches de 1. En pratique, nous observons des taux de convergence asymptotiquement exponentiels, aussi bien dans le cadre de la rĂ©solution algĂ©brique exacte que dans celui de la rĂ©solution inexacte.Enfin, nous menons une analyse thĂ©orique des stratĂ©gies proposĂ©es

    Multigrid Methods for Elliptic Optimal Control Problems

    Get PDF
    In this dissertation we study multigrid methods for linear-quadratic elliptic distributed optimal control problems. For optimal control problems constrained by general second order elliptic partial differential equations, we design and analyze a P1P_1 finite element method based on a saddle point formulation. We construct a WW-cycle algorithm for the discrete problem and show that it is uniformly convergent in the energy norm for convex domains. Moreover, the contraction number decays at the optimal rate of m−1m^{-1}, where mm is the number of smoothing steps. We also prove that the convergence is robust with respect to a regularization parameter. The robust convergence of VV-cycle and WW-cycle algorithms on general domains are demonstrated by numerical results. For optimal control problems constrained by symmetric second order elliptic partial differential equations together with pointwise constraints on the state variable, we design and analyze symmetric positive definite P1P_1 finite element methods based on a reformulation of the optimal control problem as a fourth order variational inequality. We develop a multigrid algorithm for the reduced systems that appear in a primal-dual active set method for the discrete variational inequalities. The performance of the algorithm is demonstrated by numerical results

    Study of Single-Phase Flow in Structured Packing Using Computational Fluid Dynamics

    Get PDF

    The simulation of incompressible flow using the artificial compressibility method.

    Get PDF
    In this work an algorithm is developed for simulating incompressible steady flow on two and three-dimensional unstructured meshes. The Navier-Stokes equations are briefly reviewed as the basic governing equation for fluid flow. Using this set of equations, in the limit of incompressible flow, the problem of imposing the time independent continuity equation on the momentum equations arises. This difficulty can be removed by employing the Artificial Compressibility approach. This approach modifies the continuity equation by adding a pseudo pressure time derivative. This modification makes the set of equations well conditioned for numerical solution. If the set of modified equations is used for the solution of steady state problems, the added pressure derivative tends to zero and the set of equations reduces to the steady state incompressible Navier-Stokes equations. The cell-vertex finite volume method is employed for solving the modified equations on unstructured triangular and tetrahedral meshes. The principles of central difference space discretisation are described and the basic ideas behind adding artificial dissipation term are reviewed. A normalisation procedure for the computation of the artificial dissipation term is adopted. Two different formulations based upon a cell-vertex finite volume method and a Galerkin finite element method for the discretisation of the viscous terms on unstructured triangular meshes are employed in two and three dimensions. A modification to the finite volume formulation is introduced for improving accuracy on unstructured grids. The issues relating to multi-stage time stepping, boundary conditions and some techniques for increasing computational efficiency are described. A general review of several methods for generating regular and irregular unstructured triangular and tetrahedral meshes are presented. The proposed algorithm is validated by solving several inviscid and viscous two-dimensional test cases. Extension of the algorithm to three dimensions are studied by using some further benchmark examples. Some engineering applications are considered to present the ability of the developed flow solver to simulate more complicated real world problems. Finally, some conclusions are drawn and a few guidelines for further research work are suggested

    FINITE ELEMENT METHODS FOR AXISYMMETRIC PDES AND DIVERGENCE FREE FINITE ELEMENT PAIRS ON PARTICULAR MESH REFINEMENTS

    Get PDF
    This dissertation discusses the following two main topics. 1) Finite element approximation for Partial Differential Equations (PDEs) defined on axisymmetric domains: We introduce the Darcy equations on axisymmetric domains and we show the stability of a low--order Raviart-Thomas element pair. We provide numerical experiments to support our theoretical results. Also, we introduce the Stokes equations on axisymmetric domains and show that the axisymmetric Stokes equations can fit within a commutative de Rham complex. 2) Connection between the grad-div stabilized and divergence-free Stokes finite element pairs and low--order divergence-free elements on particular mesh refinements: We introduce the most recent results that connect the grad-div stabilized Taylor--Hood (TH) finite element pair and divergence-free Scott--Vogelius (SV) finite element pairs, and we use these results to extend and generalize this connection to other Stokes finite element pairs. Finally, we provide numerical examples for low order divergence-free Stokes finite element pairs defined on particular mesh refinements. This research is focused on the numerical implementation aspects of these finite element pairs
    corecore