26,902 research outputs found

    Evolutionary Approaches to Minimizing Network Coding Resources

    Get PDF
    We wish to minimize the resources used for network coding while achieving the desired throughput in a multicast scenario. We employ evolutionary approaches, based on a genetic algorithm, that avoid the computational complexity that makes the problem NP-hard. Our experiments show great improvements over the sub-optimal solutions of prior methods. Our new algorithms improve over our previously proposed algorithm in three ways. First, whereas the previous algorithm can be applied only to acyclic networks, our new method works also with networks with cycles. Second, we enrich the set of components used in the genetic algorithm, which improves the performance. Third, we develop a novel distributed framework. Combining distributed random network coding with our distributed optimization yields a network coding protocol where the resources used for coding are optimized in the setup phase by running our evolutionary algorithm at each node of the network. We demonstrate the effectiveness of our approach by carrying out simulations on a number of different sets of network topologies.Comment: 9 pages, 6 figures, accepted to the 26th Annual IEEE Conference on Computer Communications (INFOCOM 2007

    A branch-and-bound methodology within algebraic modelling systems

    Get PDF
    Through the use of application-specific branch-and-bound directives it is possible to find solutions to combinatorial models that would otherwise be difficult or impossible to find by just using generic branch-and-bound techniques within the framework of mathematical programming. {\sc Minto} is an example of a system which offers the possibility to incorporate user-provided directives (written in {\sc C}) to guide the branch-and-bound search. Its main focus, however, remains on mathematical programming models. The aim of this paper is to present a branch-and-bound methodology for particular combinatorial structures to be embedded inside an algebraic modelling language. One advantage is the increased scope of application. Another advantage is that directives are more easily implemented at the modelling level than at the programming level
    corecore