34 research outputs found

    An Algebraic Analysis of Conchoids to Algebraic Curves

    Full text link
    We study the conchoid to an algebraic affine plane curve C from the perspective of algebraic geometry, analyzing their main algebraic properties. Beside C, the notion of conchoid involves a point A in the affine plane (the focus) and a nonzero field element d (the distance).We introduce the formal definition of conchoid by means of incidence diagrams.We prove that the conchoid is a 1-dimensional algebraic set having atmost two irreducible components. Moreover, with the exception of circles centered at the focus A and taking d as its radius, all components of the corresponding conchoid have dimension 1. In addition, we introduce the notions of special and simple components of a conchoid. Furthermore we state that, with the exception of lines passing through A, the conchoid always has at least one simple component and that, for almost every distance, all the components of the conchoid are simple. We state that, in the reducible case, simple conchoid components are birationally equivalent to C, and we show how special components can be used to decide whether a given algebraic curve is the conchoid of another curve

    The Relation Between Offset and Conchoid Constructions

    Full text link
    The one-sided offset surface Fd of a given surface F is, roughly speaking, obtained by shifting the tangent planes of F in direction of its oriented normal vector. The conchoid surface Gd of a given surface G is roughly speaking obtained by increasing the distance of G to a fixed reference point O by d. Whereas the offset operation is well known and implemented in most CAD-software systems, the conchoid operation is less known, although already mentioned by the ancient Greeks, and recently studied by some authors. These two operations are algebraic and create new objects from given input objects. There is a surprisingly simple relation between the offset and the conchoid operation. As derived there exists a rational bijective quadratic map which transforms a given surface F and its offset surfaces Fd to a surface G and its conchoidal surface Gd, and vice versa. Geometric properties of this map are studied and illustrated at hand of some complete examples. Furthermore rational universal parameterizations for offsets and conchoid surfaces are provided

    Design and Implementation of Conchoid and Offset Processing Maple Packages

    Get PDF
    Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning

    First Steps Towards Radical Parametrization of Algebraic Surfaces

    Get PDF
    We introduce the notion of radical parametrization of a surface, and we provide algorithms to compute such type of parametrizations for families of surfaces, like: Fermat surfaces, surfaces with a high multiplicity (at least the degree minus 4) singularity, all irreducible surfaces of degree at most 5, all irreducible singular surfaces of degree 6, and surfaces containing a pencil of low-genus curves. In addition, we prove that radical parametrizations are preserved under certain type of geometric constructions that include offset and conchoids.Comment: 31 pages, 7 color figures. v2: added another case of genus

    Poopćene konhoide

    Get PDF
    We adapt the classical definition of conchoids as known from the Euclidean plane to geometries that can be modeled within quadrics. Based on a construction by means of cross ratios, a generalized conchoid transformation is obtained. Basic properties of the generalized conchoid transformation are worked out. At hand of some prominent examples - line geometry and sphere geometry - the actions of these conchoid transformations are studied. Linear and also non-linear transformations are presented and relations to well-known transformations are disclosed.Prilagođavamo klasičnu definiciju konhoida iz euklidske ravnine geometrijama definiranim kvadrikama. Postiže se poopćena konhoidna transformacija koja se temelji na konstrukciji pomoću dvoomjera. Proučavaju se osnovna svojstva ovakve transformacije. Djelovanje poopćene konhoidne transformacije se proučava na nekim istaknutim primjerima kao što su pravčasta i sferna geometrija. Prikazuju se linearne i nelinearne transformacije te su opisane veze s dobro poznatim transformacijama

    Rational conchoid and offset constructions: algorithms and implementation

    Get PDF
    This paper is framed within the problem of analyzing the rationality of the components of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane curve and, in the affirmative case, the actual computation of parametrizations. We recall some of the basic definitions and main properties on offsets (see [13]), and conchoids (see [15]) as well as the algorithms for parametrizing their rational components (see [1] and [16], respectively). Moreover, we implement the basic ideas creating two packages in the computer algebra system Maple to analyze the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition, we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained, their rationality analyzed, and parametrizations are provided using the created packages

    Rational parametrization of conchoids to algebraic curves

    Get PDF
    We study the rationality of each of the components of the conchoid to an irreducible algebraic affine plane curve, excluding the trivial cases of the lines through the focus and the circle centered at the focus and radius the distance involved in the conchoid. We prove that conchoids having all their components rational can only be generated by rational curves. Moreover, we show that reducible conchoids to rational curves have always their two components rational. In addition, we prove that the rationality of the conchoid component, to a rational curve, does depend on the base curve and on the focus but not on the distance. As a consequence, we provide an algorithm that analyzes the rationality of all the components of the conchoid and, in the affirmative case, parametrizes them. The algorithm only uses a proper parametrization of the base curve and the focus and, hence, does not require the previous computation of the conchoid. As a corollary, we show that the conchoid to the irreducible conics, with conchoid-focus on the conic, are rational and we give parametrizations. In particular we parametrize the Limaçons of Pascal. We also parametrize the conchoids of Nicomedes. Finally, we show how to find the foci from where the conchoid is rational or with two rational components

    Conchoidal transform of two plane curves

    Full text link
    The conchoid of a plane curve CC is constructed using a fixed circle BB in the affine plane. We generalize the classical definition so that we obtain a conchoid from any pair of curves BB and CC in the projective plane. We present two definitions, one purely algebraic through resultants and a more geometric one using an incidence correspondence in \PP^2 \times \PP^2. We prove, among other things, that the conchoid of a generic curve of fixed degree is irreducible, we determine its singularities and give a formula for its degree and genus. In the final section we return to the classical case: for any given curve CC we give a criterion for its conchoid to be irreducible and we give a procedure to determine when a curve is the conchoid of another.Comment: 18 pages Revised version: slight title change, improved exposition, fixed proof of Theorem 5.3 Accepted for publication in Appl. Algebra Eng., Commun. Comput
    corecore