150 research outputs found

    Ein Fixpunkt-Kalkül zur Charakterisierung interaktiven Verhaltens von Informationssystemen

    Get PDF
    The dynamics of an information system (IS) is characterized not only by its computational behavior, but also by its interactive behavior. Interactive dynamics forms an integral part of most information systems. Despite this, an understanding of the interactive nature of an IS is still low. Interaction impacts expressiveness of an IS at such fundamental levels that Wegner [Weg97, Weg99a] came with a contention saying interactive behavior cannot be modeled by Turing Machines (TMs). A TM is considered the foundational model of computation. It models computable functions that map between problem and solution domains. However, a TM models only non-interactive mappings. A mapping between a problem and a solution domain that is interactive in nature can change its direction of computation resulting from intermediate interactions. Based on this contention, Wegner proposes interaction (rather than computation) as the fundamental framework for IS modeling [Weg99]. In this thesis, we address Wegner's contention and the nature of interactive dynamics. An information system is modeled as a collection of semantic processes or Problem Solving Processes (PSPs). If these PSPs are interactive in nature, they are called open systems; and if they are non-interactive, such an IS is called a closed system. Intuitively, open system dynamics are known to be richer than closed system dynamics. We make this distinction precise in this thesis. Interaction is shown to be made up of three properties: computation, persistence of state across computations, and channel sensitivity. Persistence of state and channel sensitivity each contribute to richer behavioral semantics than just computation. This is shown by introducing a concept called the solution space of a semantic process. A solution space is the abstract domain characterized by the process dynamics. Interactive solution spaces are found to be richer than algorithmic solution spaces and also interactive solution spaces require at least a three-valued system of logic for their characterization. The earlier question of interactive behavior as applied to IS design is then revisited. Interactive dynamics of an IS characterize the IS functionality. We call the solution space of interactive IS behavior as its interaction space. The interaction space of an IS is contrasted with the object space of the IS which is concerned with the IS structure and state maintenance dynamics. The interaction space has a degree of autonomy with respect to the object space. This aspect is often not acknowledged in IS design, resulting in the intermixing of structural and functionality concerns. Separating these concerns can avoid certain conflicting problems in IS design, as well as provide better maintainability. We call this the "dual" nature of open systems. Based on this insight we propose an IS design paradigm called dualism, where an IS model is made up of an object schema, characterizing the IS structure and an interaction schema, characterizing the IS functionality. The interaction schema is characterized by a three-valued system of logic, representing a set of obligated (or liveness) behavior, permitted (or possible) behavior and forbidden behavior. The system should perform the obligated behavior to be termed functional; it may perform any of the permitted behavior and it may not perform forbidden behavior. An analysis of the dynamics of any real world system can make these three-valued characteristics apparent. Domain theory is used to propose solution space concept, and deontic logic is used to represent the three modalities of interactive IS behavior.Die Dynamik von Informationssystemen wird nicht nur durch das Verhalten der Berechnungen, sondern insbesondere durch das interaktive Verhalten charakterisiert. Demzufolge ist die Charakterisierung der Interaktion ein integraler Bestandteil der Modellierung von Informationssystemen. Obwohl dies allgemein anerkannt ist, wird die interaktive Natur von Informationsssytemen immer noch nicht verstanden. Die Interaktion von Informationssystemen ist so komplex, dass Wegner [Weg97, Weg99a] zu der Schlussfolgerung kam, dass das interaktive Verhalten von Informationssystemen nicht durch Turing Maschinen (TM) charakterisiert werden kann. Die Turing Maschine wird als eines der grundlegenden Modelle der Berechnung angesehen. Turing Maschinen modellieren berechenbare Funktionen, die zwischen Problemen und Lösungsräumen Abbildungen herstellen. Doch modellieren Turing Maschinen nur nicht interaktive Abbildungen. Eine Abbildung zwischen einem Problem und einem Lösungsraum, der essentiell interaktiv ist, kann zur Laufzeit das Resultat der Abbildung und die Abbildung aufgrund von Interaktionen selbst ändern. Auf der Grundlage dieser Beobachtung schlug Wegner vor, die Interaktion als grundlegendes Paradigma von Informationssystemen anstelle von Berechnungen anzunehmen. In dieser Dissertation werden Wegners Vermutung und die Natur des Verhaltens von Interaktion untersucht. Ein Informationssystem wird als eine Kollektion von semantischen Prozessen bzw. Problemlösungsprozessen (PLPs) modelliert. Wenn PLPs essentiell interaktiv sind, werden Systeme dieser Art offene Systeme genannt. Wenn sie nicht interaktiv sind, werden Informationssysteme geschlossene Systeme genannt. Intuitiv kann angenommen werden, dass offene Systeme ein reicheres Verhalten haben als geschlossene Systeme. In dieser Dissertation wird diese Unterscheidung präzisiert. Interaktion basiert auf folgenden drei Eigenschaften: Berechnung, Persistenz von Zustandsveränderungen und Kanalabhängigkeit. Die Persistenz von Zustandsveränderungen und Kanalabhängigkeit ist von der Ausdruckskraft her stärker als die Berechnung. Das wird in der Dissertation durch die Einführung des Lösungsraumes von semantischen Prozessen gezeigt. Ein Lösungsraum ist eine abstrakte Domäne, die durch Prozessdynamik charakterisiert wird. Interaktive Lösungsräume sind demzufolge ausdrucksstärker als algorithmische Lösungsräume. Deshalb erfordert die Darstellung des interaktiven Lösungsraumes eine mindestens dreiwertige Logik. In der Arbeit werden sowohl Fragestellungen, die bereits für Informationssysteme ausreichend untersucht schienen, kritisch hinterfragt, als auch die interaktive Dynamik von Informationssystemen charakterisiert. Der Lösungsraum eines interaktiven Informationssystemes wird demzufolge um den Interaktionsraum erweitert. Dem Interaktionsraum steht der Objektraum des Informationssystemes gegenüber, der durch die Struktur und durch die Zustandsveränderungen des Informationssystemes beschrieben ist. Der Interaktionsraum ist bis zu einem gewissen Grad unabhängig vom Objektraum. Dieser Aspekt wurde bislang für den Entwurf von Informationssystemen nicht berücksichtigt, so dass strukturelle und funktionale Charakterisierungen vermischt wurden. Wenn man diese Charakteristiken separiert, kann man Konflikte, die üblicherweise beim Informationssystementwurf entstehen, vermeiden und dadurch eine bessere Pflege der Informationssysteme erreichen. Wir nennen diesen Zusammenhang den Dualismus von offenen Systemen. Basierend auf diesen Erkenntnissen schlagen wir als Paradigma für den Entwurf von Informationssystemen den Dualismus vor, der erfordert, dass ein Informationssystem durch ein Objektschema charakterisiert wird, das die Struktur darstellt und durch ein Interaktionsschema, das die Funktionaliät darstellt. Das Interaktionsschema wird durch eine dreiwertige Logik charakterisiert, die zum einen das obligatorische Verhalten, zum zweiten das erlaubte Verhalten und zum dritten das verbotene Verhalten charakterisiert. Ein System sollte dem obligatorischen Verhalten genügen, kann entsprechend dem erlaubten Verhalten Zustandsänderungen besitzen, darf allerdings keine Zustandsänderungen zulassen, die als verboten charakterisiert sind. Die Analysis der Dynamik von Systemen in realen Anwendungen zeigt die Sinnfältigkeit dieser dreiwertigen Charakterisierung. Die Domäntheorie ist benutzt worden, um den Lösungsraum zu charakterisieren. Mit deontischer Logik können die drei Modalitäten eines interaktiven Informationssystemes charakterisiert werden

    Bindings as bounded natural functors

    Get PDF
    We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. Despite not committing to any syntactic format, the framework is “concrete” enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical higher-order logic and has been formalized in the proof assistant Isabelle/HOL

    Getting the point : obtaining and understanding fixpoints in model checking

    Get PDF

    Coinductive program verification

    Get PDF
    We present a program-verification approach based on coinduction, which makes it feasible to verify programs given an operational semantics of a programming language, without constructing intermediates like axiomatic semantics or verification-condition generators. Specifications can be written using any state predicates. The key observations are that being able to define the correctness of a style of program specification as a greatest fixpoint means coinduction can be used to conclude that a specification holds, and that the number of cases that need to be enumerated to have a coinductively provable specification can be reduced to a feasible number by using a generalized coinduction principle (based on notions of ``coinduction up to'' developed for proving bisimulation) instead of the simplest statement of coinduction. We implement our approach in Coq, producing a certifying language-independent verification framework. The soundness of the system is based on a single module proving the necessary coinduction theorem, which is imported unchanged to prove programs in any language. We demonstrate the power of this approach by verifying algorithms as complicated as Schorr-Waite graph marking, and the flexibility by instantiating it for language definitions covering several paradigms, and in several styles of semantics. We also demonstrate a comfortable level of proof automation for several languages and domains, using a common overall heuristic strategy instantiated with customized subroutines. Manual assistance is also smoothly integrated where automation is not completely successful

    A general theory of syntax with bindings

    Get PDF
    In this thesis we give a general theory of syntax with bindings. We address the problem from a mathematical point of view and at the same time we give a formalization, in the Isabelle/HOL proof assistant. Our theory uses explicit names for variables, and then deals with alpha-equivalence classes, remaining intuitive and close to informal mathematics, although being fully formalized and sound in classical high-order logic. In this sense it can be regarded as a generalization of nominal logic. Our end product can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. We provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles, obeying Barendregt’s convention. We present our work as a thinking process that starts from some desiderata, and then evolves in different formalization stages for the general theory. We start by taking a “universal algebra” approach, modelling syntaxes via algebraic-style binding signatures, which we employ in a substantial case study on formal reasoning: Church-Rosser and standardization theorems for lamda-calculus. This solution proves itself too restrictive, so we refine it into a more flexible one, which constitutes the main original contribution of this thesis: We construct a universe of functors on sets that handle bindings on a general, flexible and modular level. Our functors do not commit to any a priori syntactic format, cater for codatatypes in addition to datatypes, and are supported by powerful definition and reasoning principles. They generalize the bounded natural functors (BNFs), which have been previously implemented in Isabelle/HOL to support (co)datatypes

    Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic – IJCAR 23-24 July 2014

    Get PDF
    Preface For many years the British and the German automated reasoning communities have successfully run independent series of workshops for anybody working in the area of automated reasoning. Although open to the general public they addressed in the past primarily the British and the German communities, respectively. At the occasion of the Vienna Summer of Logic the two series have a joint event in Vienna as an IJCAR workshop. In the spirit of the two series there will be only informal proceedings with abstracts of the works presented. These are collected in this document. We have tried to maintain the informal open atmosphere of the two series and have welcomed in particular research students to present their work. We have solicited for all work related to automated reasoning and its applications with a particular interest in work-in-progress and the presentation of half-baked ideas. As in the previous years, we have aimed to bring together researchers from all areas of automated reasoning in order to foster links among researchers from various disciplines; among theoreticians, implementers and users alike, and among international communities, this year not just the British and German communities

    The Efficient Discovery of Interesting Closed Pattern Collections

    Get PDF
    Enumerating closed sets that are frequent in a given database is a fundamental data mining technique that is used, e.g., in the context of market basket analysis, fraud detection, or Web personalization. There are two complementing reasons for the importance of closed sets---one semantical and one algorithmic: closed sets provide a condensed basis for non-redundant collections of interesting local patterns, and they can be enumerated efficiently. For many databases, however, even the closed set collection can be way too large for further usage and correspondingly its computation time can be infeasibly long. In such cases, it is inevitable to focus on smaller collections of closed sets, and it is essential that these collections retain both: controlled semantics reflecting some notion of interestingness as well as efficient enumerability. This thesis discusses three different approaches to achieve this: constraint-based closed set extraction, pruning by quantifying the degree or strength of closedness, and controlled random generation of closed sets instead of exhaustive enumeration. For the original closed set family, efficient enumerability results from the fact that there is an inducing efficiently computable closure operator and that its fixpoints can be enumerated by an amortized polynomial number of closure computations. Perhaps surprisingly, it turns out that this connection does not generally hold for other constraint combinations, as the restricted domains induced by additional constraints can cause two things to happen: the fixpoints of the closure operator cannot be enumerated efficiently or an inducing closure operator does not even exist. This thesis gives, for the first time, a formal axiomatic characterization of constraint classes that allow to efficiently enumerate fixpoints of arbitrary closure operators as well as of constraint classes that guarantee the existence of a closure operator inducing the closed sets. As a complementary approach, the thesis generalizes the notion of closedness by quantifying its strength, i.e., the difference in supporting database records between a closed set and all its supersets. This gives rise to a measure of interestingness that is able to select long and thus particularly informative closed sets that are robust against noise and dynamic changes. Moreover, this measure is algorithmically sound because all closed sets with a minimum strength again form a closure system that can be enumerated efficiently and that directly ties into the results on constraint-based closed sets. In fact both approaches can easily be combined. In some applications, however, the resulting set of constrained closed sets is still intractably large or it is too difficult to find meaningful hard constraints at all (including values for their parameters). Therefore, the last part of this thesis presents an alternative algorithmic paradigm to the extraction of closed sets: instead of exhaustively listing a potentially exponential number of sets, randomly generate exactly the desired amount of them. By using the Markov chain Monte Carlo method, this generation can be performed according to any desired probability distribution that favors interesting patterns. This novel randomized approach complements traditional enumeration techniques (including those mentioned above): On the one hand, it is only applicable in scenarios that do not require deterministic guarantees for the output such as exploratory data analysis or global model construction. On the other hand, random closed set generation provides complete control over the number as well as the distribution of the produced sets.Das Aufzählen abgeschlossener Mengen (closed sets), die häufig in einer gegebenen Datenbank vorkommen, ist eine algorithmische Grundaufgabe im Data Mining, die z.B. in Warenkorbanalyse, Betrugserkennung oder Web-Personalisierung auftritt. Die Wichtigkeit abgeschlossener Mengen ist semantisch als auch algorithmisch begründet: Sie bilden eine nicht-redundante Basis zur Erzeugung von lokalen Mustern und können gleichzeitig effizient aufgezählt werden. Allerdings kann die Anzahl aller abgeschlossenen Mengen, und damit ihre Auflistungszeit, das Maß des effektiv handhabbaren oft deutlich übersteigen. In diesem Fall ist es unvermeidlich, kleinere Ausgabefamilien zu betrachten, und es ist essenziell, dass dabei beide o.g. Eigenschaften erhalten bleiben: eine kontrollierte Semantik im Sinne eines passenden Interessantheitsbegriffes sowie effiziente Aufzählbarkeit. Diese Arbeit stellt dazu drei Ansätze vor: das Einführen zusätzlicher Constraints, die Quantifizierung der Abgeschlossenheit und die kontrollierte zufällige Erzeugung einzelner Mengen anstelle von vollständiger Aufzählung. Die effiziente Aufzählbarkeit der ursprünglichen Familie abgeschlossener Mengen rührt daher, dass sie durch einen effizient berechenbaren Abschlussoperator erzeugt wird und dass desweiteren dessen Fixpunkte durch eine amortisiert polynomiell beschränkte Anzahl von Abschlussberechnungen aufgezählt werden können. Wie sich herausstellt ist dieser Zusammenhang im Allgemeinen nicht mehr gegeben, wenn die Funktionsdomäne durch Constraints einschränkt wird, d.h., dass die effiziente Aufzählung der Fixpunkte nicht mehr möglich ist oder ein erzeugender Abschlussoperator unter Umständen gar nicht existiert. Diese Arbeit gibt erstmalig eine axiomatische Charakterisierung von Constraint-Klassen, die die effiziente Fixpunktaufzählung von beliebigen Abschlussoperatoren erlauben, sowie von Constraint-Klassen, die die Existenz eines erzeugenden Abschlussoperators garantieren. Als ergänzenden Ansatz stellt die Dissertation eine Generalisierung bzw. Quantifizierung des Abgeschlossenheitsbegriffs vor, der auf der Differenz zwischen den Datenbankvorkommen einer Menge zu den Vorkommen all seiner Obermengen basiert. Mengen, die bezüglich dieses Begriffes stark abgeschlossen sind, weisen eine bestimmte Robustheit gegen Veränderungen der Eingabedaten auf. Desweiteren wird die gewünschte effiziente Aufzählbarkeit wiederum durch die Existenz eines effizient berechenbaren erzeugenden Abschlussoperators sichergestellt. Zusätzlich zu dieser algorithmischen Parallele zum Constraint-basierten Vorgehen, können beide Ansätze auch inhaltlich kombiniert werden. In manchen Anwendungen ist die Familie der abgeschlossenen Mengen, zu denen die beiden oben genannten Ansätze führen, allerdings immer noch zu groß bzw. ist es nicht möglich, sinnvolle harte Constraints und zugehörige Parameterwerte zu finden. Daher diskutiert diese Arbeit schließlich noch ein völlig anderes Paradigma zur Erzeugung abgeschlossener Mengen als vollständige Auflistung, nämlich die randomisierte Generierung einer Anzahl von Mengen, die exakt den gewünschten Vorgaben entspricht. Durch den Einsatz der Markov-Ketten-Monte-Carlo-Methode ist es möglich die Verteilung dieser Zufallserzeugung so zu steuern, dass das Ziehen interessanter Mengen begünstigt wird. Dieser neue Ansatz bildet eine sinnvolle Ergänzung zu herkömmlichen Techniken (einschließlich der oben genannten): Er ist zwar nur anwendbar, wenn keine deterministischen Garantien erforderlich sind, erlaubt aber andererseits eine vollständige Kontrolle über Anzahl und Verteilung der produzierten Mengen
    corecore