2,414 research outputs found

    airline revenue management

    Get PDF
    With the increasing interest in decision support systems and the continuous advance of computer science, revenue management is a discipline which has received a great deal of interest in recent years. Although revenue management has seen many new applications throughout the years, the main focus of research continues to be the airline industry. Ever since Littlewood (1972) first proposed a solution method for the airline revenue management problem, a variety of solution methods have been introduced. In this paper we will give an overview of the solution methods presented throughout the literature.revenue management;seat inventory control;OR techniques;mathematical programming

    A decomposition approach for commodity pickup and delivery with time-windows under uncertainty

    Get PDF
    We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems involving commodity pickup and delivery with time-windows. Our work examines methods of proactive planning, that is, robust plan generation to protect against future uncertainty. By a priori modeling uncertainties in data corresponding to service times, resource availability, supplies and demands, we generate solutions that are more robust operationally, that is, more likely to be executed or easier to repair when disrupted. We propose a novel modeling and solution framework involving a decomposition scheme that separates problems into a routing master problem and Scheduling Sub-Problems; and iterates to find the optimal solution. Uncertainty is captured in part by the master problem and in part by the Scheduling Sub-Problem. We present proof-of-concept for our approach using real data involving routing and scheduling for a large shipment carrier’s ground network, and demonstrate the improved robustness of solutions from our approach

    Revenue Management for Make-to-Order and Make-to-Stock Systems

    Get PDF
    With the success of Revenue Management (RM) techniques over the past three decades in various segments of the service industry, many manufacturing firms have started exploring innovative RM technologies to improve their profits. This dissertation studies RM for make-to-order (MTO) and make-to-stock (MTS) systems. We start with a problem faced by a MTO firm that has the ability to reject or accept the order and set prices and lead-times to influence demands. The firm is confronted with the problem to decide, which orders to accept or reject and trade-off the price, lead-time and potential for increased demand against capacity constraints, in order to maximize the total profits in a finite planning horizon with deterministic demands. We develop a mathematical model for this problem. Through numerical analysis, we present insights regarding the benefits of price customization and lead-time flexibilities in various demand scenarios. However, the demands of MTO firms are always hard to be predicted in most situations. We further study the above problem under the stochastic demands, with the objective to maximize the long-run average profit. We model the problem as a Semi-Markov Decision Problem (SMDP) and develop a reinforcement learning (RL) algorithm-Q-learning algorithm (QLA), in which a decision agent is assigned to the machine and improves the accuracy of its action-selection decisions via a “learning process. Numerical experiment shows the superior performance of the QLA. Finally, we consider a problem in a MTS production system consists of a single machine in which the demands and the processing times for N types of products are random. The problem is to decide when, what, and how much to produce so that the long-run average profit. We develop a mathematical model and propose two RL algorithms for real-time decision-making. Specifically, one is a Q-learning algorithm for Semi-Markov decision process (QLS) and another is a Q-learning algorithm with a learning-improvement heuristic (QLIH) to further improve the performance of QLS. We compare the performance of QLS and QLIH with a benchmarking Brownian policy and the first-come-first-serve policy. The numerical results show that QLIH outperforms QLS and both benchmarking policies

    Models and Techniques for Hotel Revenue Management Using a Roling Horizon

    Get PDF
    AbstractThis paper studies decision rules for accepting reservations for stays in a hotel based on deterministic and stochastic mathematical programming techniques. Booking control strategies are constructed that include ideas for nesting, booking limits and bid prices. We allow for multiple day stays. Instead of optimizing a decision period consisting of a fixed set of target booking days, we simultaneously optimize the complete range of target booking dates that are open for booking at the moment of optimization. This yields a rolling horizon of overlapping decision periods, which will conveniently capture the effects of overlapping stays.mathematical programming;Revenue Management;yield management

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A scenario aggregation based approach for determining a robust airline fleet composition

    Get PDF
    Strategic airline fleet planning is one of the major issues addressed through newly initiated decision support systems, designed to assist airlines and aircraft manufacturers in assessing the benefits of the emerging concept of dynamic capacity allocation. We present background research connected with such a system, which aims to explicitly account for the stochastic nature of passenger demand in supporting decisions related to the fleet composition problem. We address this problem through a scenario aggregation based approach and present results on representative case studies based on realistic data. Our investigations establish clear benefits of a stochastic approach as compared with deterministic formulations, as well as its implementation feasibility using state-of-the-artoptimization software.Dynamic capacity allocation;Airline fleet composition;Stochastic programming;Scenario aggregation;Fleet assignment
    • …
    corecore