1,780 research outputs found

    Machine learning to empower electrohydrodynamic processing

    Get PDF
    Electrohydrodynamic (EHD) processes are promising healthcare fabrication technologies, as evidenced by the number of commercialised and food-and-drug administration (FDA)-approved products produced by these processes. Their ability to produce both rapidly and precisely nano-sized products provides them with a unique set of qualities that cannot be matched by other fabrication technologies. Consequently, this has stimulated the development of EHD processing to tackle other healthcare challenges. However, as with most technologies, time and resources will be needed to realise fully the potential EHD processes can offer. To address this bottleneck, researchers are adopting machine learning (ML), a subset of artificial intelligence, into their workflow. ML has already made ground-breaking advancements in the healthcare sector, and it is anticipated to do the same in the materials domain. Presently, the application of ML in fabrication technologies lags behind other sectors. To that end, this review showcases the progress made by ML for EHD workflows, demonstrating how the latter can benefit greatly from the former. In addition, we provide an introduction to the ML pipeline, to help encourage the use of ML for other EHD researchers. As discussed, the merger of ML with EHD has the potential to expedite novel discoveries and to automate the EHD workflow

    Analyse et optimisation d'efficacité de réseaux manufacturiers complexes

    Get PDF
    Les travaux de ce mémoire portent sur l'analyse et la conception optimale de systèmes manufacturiers composés de machines non fiables. Les systèmes considérés peuvent opérer selon une structure réseau d’assemblage/désassemblage. Des stocks tampons sont placés entre les machines pour les découpler les unes des autres. Ces machines peuvent opérer en mode de fonctionnement dégradé. Chaque machine est modélisée comme un système à trois états : fonctionnement nominal, panne totale et mode dégradé. On considère que le mode de fonctionnement dégradé affecte uniquement le taux de production nominal des machines et non la qualité des pièces produites. Afin d’évaluer le taux de production d’un tel réseau manufacturier à machines multi-états (dit complexe), une méthode d’évaluation analytique est tout d’abord explorée. Cette méthode consiste à remplacer chaque machine par une machine équivalente à deux états, puis à appliquer ensuite une des méthodes existantes pour les réseaux avec machines binaires. Après avoir découvert que cette méthode est imprécise même dans le cas simple de deux machines multi-états séparées par un stock, nous avons utilisé une simulation à base du logiciel Simio en vue d’une conception optimale du réseau. Dans cette conception, il est question de faire une sélection conjointe des technologies des machines et des tailles de stocks. L’objectif de l’optimisation est de maximiser le taux de production sous des contraintes de budget. La plupart des travaux existants considèrent le problème d’allocation des stocks tampons pour des lignes séries ou séries-parallèles, en considérant que les technologies des machines sont déjà choisies. L’extension ainsi développée est validée en utilisant différentes instances générées aléatoirement. Pour ce faire, le modèle de simulation développé est couplé à deux méthodes d’optimisation. La première méthode utilise l’outil d'optimisation OptQuest. La seconde méthode est une nouvelle heuristique basée sur un algorithme génétique (AG). Dans chacune des méthodes, l’outil d’optimisation se sert de l’estimation du taux de production effectuée par l’outil de simulation dan #s sa fonction d’objectif. Notre nouvelle méthode (simulation/AG) est comparée à une approche couplant une méthode analytique à un AG dans le cas de machines binaires. Les résultats numériques obtenus illustrent l’efficacité de notre méthode au niveau de la qualité des solutions, au détriment d’un temps de calcul moins performant.This thesis focuses on the analysis and optimal design of manufacturing systems composed of unreliable machinery. The considered systems can operate in an assembly / disassembly structure. Buffer stocks are placed between the machines in order to decouple them from each other. These machines can operate in degraded mode. Each machine is represented as a system with three states: nominal operation, blackout and a degraded mode. We consider that the degraded mode affects only the nominal production rate of machines and not the quality of the parts produced. To assess the rate of production of such a manufacturing system with multi-state machine (called complex), an analytical method is first explored. This method consists on replacing each machine by an equivalent one with two states, and then applying one of the classical methods for networks with binary state machines. After discovering the lack of precision of this method, we used a simulation method based on the software Simio for the optimal design of networks with multi-state machines. In this design, it is about making a joint selection of technologies and buffer sizes between machines. The objective of the optimization is to maximize the rate of production under budget constraints. Most existing works consider the problem of allocating buffer stocks for serial lines or series-parallel when machine technologies are already chosen. Our method is developed and validated using different randomly generated instances. To do this, the developed simulation model is coupled with two optimization methods. The first method uses the OptQuest optimization tool. The second method is a new heuristic based on a genetic algorithm (GA). In each method, the optimizer uses the production rate estimation carried out by the simulation tool in its objective function. Our new method (simulation / GA) is compared to an approach coupling an analytical method to a GA in the case of binary machines. The numerical results illustrate the effectiveness of our method in terms of solution quality at the expense of the less efficient computation time

    Process algebra approach to parallel DBMS performance modelling

    Get PDF
    Abstract unavailable please refer to PD

    The Translocal Event and the Polyrhythmic Diagram

    Get PDF
    This thesis identifies and analyses the key creative protocols in translocal performance practice, and ends with suggestions for new forms of transversal live and mediated performance practice, informed by theory. It argues that ontologies of emergence in dynamic systems nourish contemporary practice in the digital arts. Feedback in self-organised, recursive systems and organisms elicit change, and change transforms. The arguments trace concepts from chaos and complexity theory to virtual multiplicity, relationality, intuition and individuation (in the work of Bergson, Deleuze, Guattari, Simondon, Massumi, and other process theorists). It then examines the intersection of methodologies in philosophy, science and art and the radical contingencies implicit in the technicity of real-time, collaborative composition. Simultaneous forces or tendencies such as perception/memory, content/ expression and instinct/intellect produce composites (experience, meaning, and intuition- respectively) that affect the sensation of interplay. The translocal event is itself a diagram - an interstice between the forces of the local and the global, between the tendencies of the individual and the collective. The translocal is a point of reference for exploring the distribution of affect, parameters of control and emergent aesthetics. Translocal interplay, enabled by digital technologies and network protocols, is ontogenetic and autopoietic; diagrammatic and synaesthetic; intuitive and transductive. KeyWorx is a software application developed for realtime, distributed, multimodal media processing. As a technological tool created by artists, KeyWorx supports this intuitive type of creative experience: a real-time, translocal “jamming” that transduces the lived experience of a “biogram,” a synaesthetic hinge-dimension. The emerging aesthetics are processual – intuitive, diagrammatic and transversal

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown
    corecore