30 research outputs found

    Semantic methods for functional hybrid modelling

    Get PDF
    Equation-based modelling languages have become a vital tool in many areas of science and engineering. Functional Hybrid Modelling (FHM) is an approach to equation-based modelling that allows the behaviour of a physical system to be expressed as a modular hierarchy of undirected equations. FHM supports a variety of advanced language features — such as higher-order models and variable system structure — that sets it apart from the majority of other modelling languages. However, the inception of these new features has not been accompanied by the semantic tools required to effectively use and understand them. Specifically, there is a lack of static safety assurances for dynamic models and the semantics of the aforementioned language features are poorly understood. Static safety guarantees are highly desirable as they allow problems that may cause an equation system to become unsolvable to be detected early, during compilation. As a result, the use of static analysis techniques to enforce structural invariants (e.g. that there are the same number of equations as unknowns) is now in use in main-stream equation-based languages like Modelica. Unfortunately, the techniques employed by these languages are somewhat limited, both in their capacity to deal with advanced language features and also by the spectrum of invariants they are able to enforce. Formalising the semantics of equation-based languages is also important. Semantics allow us to better understand what a program is doing during execution, and to prove that this behaviour meets with our expectation. They also allow different implementations of a language to agree with one another, and can be used to demonstrate the correctness of a compiler or interpreter. However, current attempts to formalise such semantics typically fall short of describing advanced features, are not compositional, and/or fail to show correctness. This thesis provides two major contributions to equation-based languages. Firstly, we develop a refined type system for FHM capable of capturing a larger number of structural anomalies than is currently possible with existing methods. Secondly, we construct a compositional semantics for the discrete aspects of FHM, and prove a number of key correctness properties

    Semantic methods for functional hybrid modelling

    Get PDF
    Equation-based modelling languages have become a vital tool in many areas of science and engineering. Functional Hybrid Modelling (FHM) is an approach to equation-based modelling that allows the behaviour of a physical system to be expressed as a modular hierarchy of undirected equations. FHM supports a variety of advanced language features — such as higher-order models and variable system structure — that sets it apart from the majority of other modelling languages. However, the inception of these new features has not been accompanied by the semantic tools required to effectively use and understand them. Specifically, there is a lack of static safety assurances for dynamic models and the semantics of the aforementioned language features are poorly understood. Static safety guarantees are highly desirable as they allow problems that may cause an equation system to become unsolvable to be detected early, during compilation. As a result, the use of static analysis techniques to enforce structural invariants (e.g. that there are the same number of equations as unknowns) is now in use in main-stream equation-based languages like Modelica. Unfortunately, the techniques employed by these languages are somewhat limited, both in their capacity to deal with advanced language features and also by the spectrum of invariants they are able to enforce. Formalising the semantics of equation-based languages is also important. Semantics allow us to better understand what a program is doing during execution, and to prove that this behaviour meets with our expectation. They also allow different implementations of a language to agree with one another, and can be used to demonstrate the correctness of a compiler or interpreter. However, current attempts to formalise such semantics typically fall short of describing advanced features, are not compositional, and/or fail to show correctness. This thesis provides two major contributions to equation-based languages. Firstly, we develop a refined type system for FHM capable of capturing a larger number of structural anomalies than is currently possible with existing methods. Secondly, we construct a compositional semantics for the discrete aspects of FHM, and prove a number of key correctness properties

    Compositional approach to design of digital circuits

    Get PDF
    PhD ThesisIn this work we explore compositional methods for design of digital circuits with the aim of improving existing methodoligies for desigh reuse. We address compositionality techniques looking from both structural and behavioural perspectives. First we consider the existing method of handshake circuit optimisation via control path resynthesis using Petri nets, an approach using structural composition. In that approach labelled Petri net parallel composition plays an important role and we introduce an improvement to the parallel composition algorithm, reducing the number of redundant places in the resulting Petri net representations. The proposed algorithm applies to labelled Petri nets in general and can be applied outside of the handshake circuit optimisation use case. Next we look at the conditional partial order graph (CPOG) formalism, an approach that allows for a convenient representation of systems consisting of multiple alternative system behaviours, a phenomenon we call behavioural composition. We generalise the notion of CPOG and identify an algebraic structure on a more general notion of parameterised graph. This allows us to do equivalence-preserving manipulation of graphs in symbolic form, which simplifies specification and reasoning about systems defined in this way, as displayed by two case studies. As a third contribution we build upon the previous work of CPOG synthesis used to generate binary encoding of microcontroller instruction sets and design the corresponding instruction decoder logic. The proposed CPOG synthesis technique solves the optimisation problem for the general case, reducing it to Boolean satisfiability problem and uses existing SAT solving tools to obtain the result.This work was supported by a studentship from Newcastle University EECE school, EPSRC grant EP/G037809/1 (VERDAD) and EPSRC grant EP/K001698/1 (UNCOVER). i

    Emerging trends proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2004

    Get PDF
    technical reportThis volume constitutes the proceedings of the Emerging Trends track of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The TPHOLs conference covers all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification. There were 42 papers submitted to TPHOLs 2004 in the full research cate- gory, each of which was refereed by at least 3 reviewers selected by the program committee. Of these submissions, 21 were accepted for presentation at the con- ference and publication in volume 3223 of Springer?s Lecture Notes in Computer Science series. In keeping with longstanding tradition, TPHOLs 2004 also offered a venue for the presentation of work in progress, where researchers invite discussion by means of a brief introductory talk and then discuss their work at a poster session. The work-in-progress papers are held in this volume, which is published as a 2004 technical report of the School of Computing at the University of Utah

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Principles of Security and Trust

    Get PDF
    This open access book constitutes the proceedings of the 8th International Conference on Principles of Security and Trust, POST 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 10 papers presented in this volume were carefully reviewed and selected from 27 submissions. They deal with theoretical and foundational aspects of security and trust, including on new theoretical results, practical applications of existing foundational ideas, and innovative approaches stimulated by pressing practical problems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.
    corecore