4,085 research outputs found

    A stochastic behavior analysis of stochastic restricted-gradient descent algorithm in reproducing kernel Hilbert spaces

    Full text link
    This paper presents a stochastic behavior analysis of a kernel-based stochastic restricted-gradient descent method. The restricted gradient gives a steepest ascent direction within the so-called dictionary subspace. The analysis provides the transient and steady state performance in the mean squared error criterion. It also includes stability conditions in the mean and mean-square sense. The present study is based on the analysis of the kernel normalized least mean square (KNLMS) algorithm initially proposed by Chen et al. Simulation results validate the analysis

    Robust Adaptive LCMV Beamformer Based On An Iterative Suboptimal Solution

    Get PDF
    The main drawback of closed-form solution of linearly constrained minimum variance (CF-LCMV) beamformer is the dilemma of acquiring long observation time for stable covariance matrix estimates and short observation time to track dynamic behavior of targets, leading to poor performance including low signal-noise-ratio (SNR), low jammer-to-noise ratios (JNRs) and small number of snapshots. Additionally, CF-LCMV suffers from heavy computational burden which mainly comes from two matrix inverse operations for computing the optimal weight vector. In this paper, we derive a low-complexity Robust Adaptive LCMV beamformer based on an Iterative Suboptimal solution (RAIS-LCMV) using conjugate gradient (CG) optimization method. The merit of our proposed method is threefold. Firstly, RAIS-LCMV beamformer can reduce the complexity of CF-LCMV remarkably. Secondly, RAIS-LCMV beamformer can adjust output adaptively based on measurement and its convergence speed is comparable. Finally, RAIS-LCMV algorithm has robust performance against low SNR, JNRs, and small number of snapshots. Simulation results demonstrate the superiority of our proposed algorithms
    • …
    corecore