69 research outputs found

    Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia

    Get PDF
    This paper describes an operational retrieval algorithm for the sand/dust storm (SDS) from FY-2C/S-VISSR (Stretched-Visible and Infrared Spin-Scan Radiometer) developed at the National Satellite Meteorological Center (NSMC) of China. This algorithm, called Dust Retrieval Algorithm based on Geostationary Imager (DRAGI), is based on the optical and radiative physical properties of SDS in mid-infrared and thermal infrared spectral regions as well as the observation of all bands in the geostationary imager, which include the Brightness Temperature Difference (BTD) in split window channels, Infrared Difference Dust Index (IDDI) and the ratio of middle infrared reflectance to visible reflectance. It also combines the visible and water vapor bands observation of the geostationary imager to identify the dust clouds from the surface targets and meteorological clouds. The output product is validated by and related to other dust aerosol observations such as the synoptic weather reports, surface visibility, aerosol optical depth (AOD) and ground-based PM<sub>10</sub> observations. Using the SDS-IDD product and a data assimilation scheme, the dust forecast model CUACE/Dust achieved a substantial improvement to the SDS predictions in spring 2006

    Identification, Representation, and Analysis of Convective Storms

    Get PDF
    Large amount of time series of spatial snapshot data have been collected or generated for the monitoring and modeling of environmental systems. Those data provide an opportunity to study the movement and dynamics of natural phenomena. While the snapshot organization is conceptually simple and straightforward, it does not directly capture or represent the dynamic characteristics of the phenomena. This study presents computational methods to identify dynamic events from time series of spatial snapshots. Events are represented as directed spatiotemporal graphs to characterize their initiation, development, movement, and cessation. Graph-based algorithms are then used to analyze the dynamics of the events. The method is demonstrated using the time series radar reflectivity images during one of the deadliest storm outbreaks that impacted 15 states of southeastern U.S. between April 23 and 29, 2011. As shown in this case study, convective storm events identified using our methods are consistent with previous studies and our analysis indicates that the left split/merger occurs more than right split/merger in those convective storm events, which confirms theory, numerical simulations, and other observed case studies. This study also examines the spatial and temporal characteristics of thunderstorm life cycles in central United States mainly covering Kansas, Oklahoma, and northern Texas during the warm seasons from 2010 to 2014. Radar reflectivity and cloud-to-ground lightning data were used to identify thunderstorms. The thunderstorms were stored in a GIS database with a number of additional thunderstorm attributes. The spatial and temporal characteristics of thunderstorm occurrence, duration, initiation time, termination time, movement speed, and direction were analyzed. Results revealed that thunderstorms were most frequent in the eastern part of the study area, especially at the borders among Kansas, Missouri, Oklahoma, and Arkansas. We also linked thunderstorm features to land cover types and compared thunderstorm characteristics between urban and surrounding rural areas. Our results indicated that thunderstorms favor forests and urban areas. This research demonstrates that advanced GIS representations and analyses for spatiotemporal events provide insights in thunderstorm climatology study

    Proceedings of the Second Pilot Climate Data System Workshop

    Get PDF
    The proceedings of the workshop held on January 29 and 30, 1986 are discussed. Data management, satellite radiance data, clouds, ultraviolet flux variations in the upper atmosphere, rainfall during El Nino events, and the use of optical disks are among the topics covered

    SeaWiFS technical report series. Volume 24: SeaWiFS technical report series cumulative index, volumes 1-23

    Get PDF
    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS is expected to be launched in 1995, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 23 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index will include all of the information contained in the preceeding indices
    • …
    corecore