24 research outputs found

    Wireless Medical Sensor Networks: Design Requirements and Enabling Technologies

    Get PDF
    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols—namely, Bluetooth® (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)—are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home

    Electrochemical hybrid methods and sensors for antioxidant/oxidant activity monitoring and their use as a diagnostic tool of oxidative stress: Future perspectives and challenges

    Full text link
    The terminology used in electrochemical methods which are used to generate the measured signal in antioxidant/oxidant activity (AOA/OA) sensors is briefly considered. The review presents a hybrid version of electrochemical methods for the determination of AOA/OA. Invasive electrochemical methods/sensors for AOA/OA of blood/serum/plasma, and non-invasive ones for semen, sweat, saliva and skin determination are described. AOA/OA sensors application in health estimation, cosmetology, food and nutrients is presented. Attention is paid to widely described approaches and technologies used in chemical/biochemical sensors. It will be considered as base/prototypes for developing sensors of the kind for AOA/OA determination. Prospects for the development of wearable, written sensors and biosensors are considered. Miniature and wireless sensors will allow for the monitoring of the patient’s state, both at the bedside and far beyond the hospital. The development of wearable self-powered written and printed sensors is an important step towards personalized medicine. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Real-time signal detection and classification algorithms for body-centered systems

    Full text link
    El principal motivo por el cual los sistemas de comunicación en el entrono corporal se desean con el objetivo de poder obtener y procesar señales biométricas para monitorizar e incluso tratar una condición médica sea ésta causada por una enfermedad o el rendimiento de un atleta. Dado que la base de estos sistemas está en la sensorización y el procesado, los algoritmos de procesado de señal son una parte fundamental de los mismos. Esta tesis se centra en los algoritmos de tratamiento de señales en tiempo real que se utilizan tanto para monitorizar los parámetros como para obtener la información que resulta relevante de las señales obtenidas. En la primera parte se introduce los tipos de señales y sensores en los sistemas en el entrono corporal. A continuación se desarrollan dos aplicaciones concretas de los sistemas en el entorno corporal así como los algoritmos que en las mismas se utilizan. La primera aplicación es el control de glucosa en sangre en pacientes con diabetes. En esta parte se desarrolla un método de detección mediante clasificación de patronones de medidas erróneas obtenidas con el monitor contínuo comercial "Minimed CGMS". La segunda aplicacióin consiste en la monitorizacióni de señales neuronales. Descubrimientos recientes en este campo han demostrado enormes posibilidades terapéuticas (por ejemplo, pacientes con parálisis total que son capaces de comunicarse con el entrono gracias a la monitorizacióin e interpretación de señales provenientes de sus neuronas) y también de entretenimiento. En este trabajo, se han desarrollado algoritmos de detección, clasificación y compresión de impulsos neuronales y dichos algoritmos han sido evaluados junto con técnicas de transmisión inalámbricas que posibiliten una monitorización sin cables. Por último, se dedica un capítulo a la transmisión inalámbrica de señales en los sistemas en el entorno corporal. En esta parte se estudia las condiciones del canal que presenta el entorno corporal para la transmisión de sTraver Sebastiá, L. (2012). Real-time signal detection and classification algorithms for body-centered systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16188Palanci

    Medical cyber-physical systems: A survey

    Get PDF
    Medical cyber-physical systems (MCPS) are healthcare critical integration of a network of medical devices. These systems are progressively used in hospitals to achieve a continuous high-quality healthcare. The MCPS design faces numerous challenges, including inoperability, security/privacy, and high assurance in the system software. In the current work, the infrastructure of the cyber-physical systems (CPS) are reviewed and discussed. This article enriched the researches of the networked Medical Device (MD) systems to increase the efficiency and safety of the healthcare. It also can assist the specialists of medical device to overcome crucial issues related to medical devices, and the challenges facing the design of the medical device's network. The concept of the social networking and its security along with the concept of the wireless sensor networks (WSNs) are addressed. Afterward, the CPS systems and platforms have been established, where more focus was directed toward CPS-based healthcare. The big data framework of CPSs is also included

    Mobile devices in applications for healthcare: systems and technology

    Get PDF
    Actualmente, la evolución de las comunicaciones inalámbricas y de las tecnologías de red permite el acceso a servicios médicos de manera remota desde una gran variedad de dispositivos móviles. Este nuevo contexto técnico-sanitario se conoce como m-Health y, junto con otras tendencias de nueva aparición sector como el historial clínico electrónico (HCE), podría suponer una auténtica revolución en el sector de la salud y, más concretamente, en el tratamiento y seguimiento de enfermedades crónicas. En este proyecto se exploran las posibilidades ofrecidas por e-Health y, más detalladamente, por m-Health para la gestión de enfermedades crónicas por parte del propio paciente desde un punto de vista técnico, haciendo especial hincapié en la estructura de comunicaciones necesaria. Para ello, se describen las tecnologías, arquitecturas y dispositivos disponibles con capacidad suficiente para satisfacer los requisitos establecidos por una enfermedad crónica concreta: diabetes. Atendiendo a estas consideraciones, se propone un sistema para el tratamiento de la diabetes basado en las oportunidades de las tecnologías inalámbricas actuales. Por último, el texto concluye con una serie de observaciones sobre la situación actual de m-Health y sus futuros retos.At present, the evolution of wireless communications and networking technologies allows the access to medical services from a great variety of mobile devices remotely. This new technicalmedical context is known as m-Health and, along with other emerging health trends like electronic health record (EHR), could be a revolution in the health sector and, more specifically, in the treatment and monitoring of chronic diseases. This project will explore the possibilities offered by e-Health and, in more detail, by m-Health for the self-management of chronic diseases from a technical point of view, with particular emphasis on the necessary communications structure. To do so, we describe the technologies, architectures and devices available with sufficient capacity to meet the requirements of specific chronic disease: diabetes. In response to these considerations, we propose a system for the treatment of diabetes based on current wireless technologies opportunities. Finally, the text concludes with a series of observations on the current status of m-Health and its future challenges.Ingeniería de TelecomunicaciónTelekomunikazio Ingeniaritz

    CCmH: The cloud computing paradigm for mobile health (mHealth)

    Get PDF
    Cloud computing is a complex infrastructure revolved around (mobile and non-mobile) computing, database and storage capacity, and service delivery. This evolving concept aims to serve as the next generation heterogeneous service-based model, with centralized and decentralized clients, servers, services, and data storage entities across multiple platforms. Mobile cloud computing (mcc), which is a subset of the cloud computing space, is where a number of the cloud entities are mobile-based. This paper is focused around the idea of mcc deployment in the healthcare areas, defining the cloud computing mobile health (mhealth), (ccmh), which includes the relevant issues and challenges. The main contribution of this paper is a set of recommendations for the future expansions of both cloud computing and emerging mhealth technologies when they are merged together

    Ultra low power wearable sleep diagnostic systems

    Get PDF
    Sleep disorders are studied using sleep study systems called Polysomnography that records several biophysical parameters during sleep. However, these are bulky and are typically located in a medical facility where patient monitoring is costly and quite inefficient. Home-based portable systems solve these problems to an extent but they record only a minimal number of channels due to limited battery life. To surmount this, wearable sleep system are desired which need to be unobtrusive and have long battery life. In this thesis, a novel sleep system architecture is presented that enables the design of an ultra low power sleep diagnostic system. This architecture is capable of extending the recording time to 120 hours in a wearable system which is an order of magnitude improvement over commercial wearable systems that record for about 12 hours. This architecture has in effect reduced the average power consumption of 5-6 mW per channel to less than 500 uW per channel. This has been achieved by eliminating sampled data architecture, reducing the wireless transmission rate and by moving the sleep scoring to the sensors. Further, ultra low power instrumentation amplifiers have been designed to operate in weak inversion region to support this architecture. A 40 dB chopper-stabilised low power instrumentation amplifiers to process EEG were designed and tested to operate from 1.0 V consuming just 3.1 uW for peak mode operation with DC servo loop. A 50 dB non-EEG amplifier continuous-time bandpass amplifier with a consumption of 400 nW was also fabricated and tested. Both the amplifiers achieved a high CMRR and impedance that are critical for wearable systems. Combining these amplifiers with the novel architecture enables the design of an ultra low power sleep recording system. This reduces the size of the battery required and hence enables a truly wearable system.Open Acces

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35μm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74μW power consumption from 2V power supply
    corecore