38 research outputs found

    An admittance shaping controller for exoskeleton assistance of the lower extremities

    Full text link
    We present a method for lower-limb exoskeleton control that defines assistance as a desired dynamic response for the human leg. Wearing the exoskeleton can be seen as replacing the leg's natural admittance with the equivalent admittance of the coupled system. The control goal is to make the leg obey an admittance model defined by target values of natural frequency, peak magnitude and zero-frequency response. No estimation of muscle torques or motion intent is necessary. Instead, the controller scales up the coupled system's sensitivity transfer function by means of a compensator employing positive feedback. This approach increases the leg's mobility and makes the exoskeleton an active device capable of performing net positive work on the limb. Although positive feedback is usually considered destabilizing, here performance and robust stability are successfully achieved through a constrained optimization that maximizes the system's gain margins while ensuring the desired location of its dominant poles

    Admittance Control of Four-link Bionic Knee Exoskeleton with Inertia Compensation

    Get PDF
    This paper proposes a control algorithm based on the admittance principle for the motion of the four-link bionic knee exoskeleton. Firstly, the interaction between the operator and the exoskeleton was converted into the desired trajectory of the exoskeleton. Then, the inertia compensation is achieved in light of the admittance features of exoskeleton movement. Finally, the validity of the admittance control method for four-link bionic knee was confirmed through simulation experiment. The simulation results show that the relative error of the joint angle between the operator and the exoskeleton was less than 5% at normal swinging frequency, and the interaction force between the manipulator and the exoskeleton was within ±0.5 N. The research findings lay a theoretical basis for practical application of exoskeletons

    Inertia Compensation Control of a One-Degree-of-Freedom Exoskeleton for Lower-Limb Assistance: Initial Experiments

    Full text link

    A novel approach to user controlled ambulation of lower extremity exoskeletons using admittance control paradigm

    Get PDF
    The robotic lower extremity exoskeletons address the ambulatory problems confronting individuals with paraplegia. Paraplegia due to spinal cord injury (SCI) can cause motor deficit to the lower extremities leading to inability to walk. Though wheelchairs provide mobility to the user, they do not provide support to all activities of everyday living to individuals with paraplegia. Current research is addressing the issue of ambulation through the use of wearable exoskeletons that are pre-programmed. There are currently four exoskeletons in the U.S. market: Ekso, Rewalk, REX and Indego. All of the currently available exoskeletons have 2 active Degrees of Freedom (DOF) except for REX which has 5 active DOF. All of them have pre-programmed gait giving the user the ability to initiate a gait but not the ability to control the stride amplitude (height), stride frequency or stride length, and hence restricting users’ ability to navigate across different surfaces and obstacles that are commonly encountered in the community. Most current exoskeletons do not have motors for abduction or adduction to provide users with the option for movement in coronal plane, hence restricting user’s ability to effectively use the exoskeletons. These limitations of currently available pre-programmed exoskeleton models are sought to be overcome by an intuitive, real time user-controlled control mechanism employing admittance control by using hand-trajectory as a surrogate for foot trajectory. Preliminary study included subjects controlling the trajectory of the foot in a virtual environment using their contralateral hand. The study proved that hands could produce trajectories similar to human foot trajectories when provided with haptic and visual feedback. A 10 DOF 1/2 scale biped robot was built to test the control paradigm. The robot has 5 DOF on each leg with 2 DOF at the hip to provide flexion/extension and abduction/adduction, 1 DOF at the knee to provide flexion and 2 DOF at the ankle to provide flexion/extension and inversion/eversion. The control mechanism translates the trajectory of each hand into the trajectory of the ipsilateral foot in real time, thus providing the user with the ability to control each leg in both sagittal and coronal planes using the admittance control paradigm. The efficiency of the control mechanism was evaluated in a study using healthy subjects controlling the robot on a treadmill. A trekking pole was attached to each foot of the biped. The subjects controlled the trajectory of the foot of the biped by applying small forces in the direction of the required movement to the trekking pole through a force sensor. The algorithm converted the forces to Cartesian position of the foot in real time using admittance control; the Cartesian position was converted to joint angles of the hip and knee using inverse kinematics. The kinematics, synchrony and smoothness of the trajectory produced by the biped robot was evaluated at different speeds, with and without obstacles, and compared with typical walking by human subjects on the treadmill. Further, the cognitive load required to control the biped on the treadmill was evaluated and the effect of speed and obstacles with cognitive load on the kinematics, synchrony and smoothness was analyzed

    Towards human-knee orthosis interaction based on adaptive impedance control through stiffness adjustment

    Get PDF
    Rehabilitation interventions involving powered, wearable lower limb orthoses that can provide high-challenging locomotor tasks for repetitive training sessions, mainly when assist-as-needed strategies, such as adaptive impedance control, are designed. In this study, the adaptive behavior was ensured by software control of the robotic stiffness involved in the human-knee orthosis interaction in function of the gait cycle and speed. To estimate the stiffness, we analyzed the interaction torque-angle characteristics with experimental data. The speed-stiffness dependency was more evident when high stiffness values are demanded by the user's effort. Experimental evidence from five healthy subjects highlight that the adaptive control strategy provides a more comfortable, natural motion, and kinematic freedom as compared to the trajectory tracking control, allowing the user to contribute to the gait training. Future insights cover the implementation of gravitational compensation and real-time estimation and control of all inner dynamic properties of the impedance control law.This work has been supported by the FCT - Fundacao para a Ciencia e Tecnologia - with the reference scholarship SFRH/BD/108309/2015, with the reference project UID/EEA/04436/2013, and by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) - with the reference project POCI-01-0145-FEDER-006941, and partially supported with grant RYC-2014-16613 by Spanish Ministry of Economy and Competitiveness

    Review of control strategies for robotic movement training after neurologic injury

    Get PDF
    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies

    Design, implementation and control of rehabilitation robots for upper and lower limbs

    Get PDF
    We present two novel rehabilitation robots for stroke patients. For lower limb stroke rehabilitation, we present a novel self-aligning exoskeleton for the knee joint. The primal novelty of the design originates from its kinematic structure that allows translational movements of the knee joint on the sagittal plane along with the knee rotation. Automatically adjusting its joint axes, the exoskeleton enables a perfect match between human joint axes and the device axes. Thanks to this feature, the knee exoskeleton is not only capable of guaranteeing ergonomy and comfort throughout the therapy, but also extends the usable range of motion for the knee joint. Moreover, this adjustability feature significantly shortens the setup time required to attach the patient to the robot, allowing more effective time be spend on exercises instead of wasting it for adjustments. We have implemented an impedance-type concept of the knee exoskeleton, experimentally characterized its closed-loop performance and demonstrated ergonomy and useability of this device through human subject experiments. To administer table top exercises during upper limb stroke rehabilitation, we present a novel Mecanum-wheeled holonomic mobile rehabilitation robot for home therapy. The device can move/rotate independently on its unlimited planar workspace to provide assistance to patients. We have implemented two different concepts of holonomic mobile platform based on different actuation and sensing principles: an admittance-type mobile robot and a mobile platform with series elastic actuation. The admittance-type robot is integrated with virtual reality simulations and can assist patients through virtual tunnels designed around nominal task trajectories. The holonomic platform with series elastic actuation eliminates the need for costly force sensors and enables implementation of closed loop force control with higher controller gains, providing robustness against imperfections in the power transmission and allowing lower cost drive components to be utilized. For contour following tasks with the holonomic platforms, we have synthesized passive velocity field controllers (PVFC) that ensure coordination and synchronization between various degrees of freedom of the patient arm, while letting patients to complete the task at their own preferred pace. PVFC not only minimizes the contour error but also ensures coupled stability of the human-in-the-loop system

    Analisis Sistem Kendali Sendi Exoskeleton Robotik untuk Pola Pergerakan Manusia Normal

    Get PDF
    Salah satu alat yang dapat digunakan untuk membantu pergerakan tubuh manusia adalah dengan menggunakan sendi exoskeleton. Tujuan dari penelitian ini adalah untuk mengaplikasikan Fuzzy Logic Controller (FLC) dengan menggunakan C# dalam pengaturan besar torsi yang telah ditentukan dan arah putaran motor ke driver motor, serta mengubah sinyal input berupa sudut fase berjalan menggunakan metode Fuzzy Logic Clasification. Berdasarkan hasil penelitian yang telah dilakukan diperoleh kesimpulan bahwa dengan mengontrol arus yang diberikan sebesar 2215 mA menghasilkan variasi dari tiap fase gaya berjalan sehingga diketahui pola pergerakan manusia. Berdasarkan panjang lengan beban sebesar 40 cm didapatkan gaya sebesar 5,53 N
    corecore