2,581 research outputs found

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Call admission control for interactive multimedia satellite networks.

    Get PDF
    Master of Science in Engineering (Electronic). University of KwaZulu-Natal, Durban 2015.Satellite communication has become an integral component of global access communication network due mainly to its ubiquitous coverage, large bandwidth and ability to support for large numbers of users over fixed and mobile devices. However, the multiplicity of multimedia applications with diverse requirements in terms of quality of service (QoS) poses new challenges in managing the limited and expensive resources. Furthermore, the time-varying nature of the propagation channel due to atmospheric and environmental effects also poses great challenges to effective utilization of resources and the satisfaction of users’ QoS requirements. Efficient radio resource management (RRM) techniques such as call admission control (CAC) and adaptive modulation and coding (AMC) are required in order to guarantee QoS satisfaction for user established connections and realize maximum and efficient utilization of network resources. In this work, we propose two CAC policies for interactive satellite multimedia networks. The two policies are based on efficient adaptation of transmission parameters to the dynamic link characteristics. In the first policy which we refer to as Gaussian Call Admission Control with Link Adaptation (GCAC-LA), we invoke the central limit theorem to statistically multiplex rate based dynamic capacity (RBDC) connections and obtain an aggregate bandwidth and required capacity for the multiplex. Adaptive Modulation and Coding (AMC) is employed for transmission over the time-varying wireless channel of the return link of an interactive satellite network. By associating users’ channel states to particular transmission parameters, the amount of resources required to satisfy user connection requirements in each state is determined. Thus the admission control policy considers in its decision, the channel states of all existing and new connections. The performance of the system is investigated by simulation and the results show that AMC significantly improves the utilization and call blocking performance by more than twice that of a system without link adaptation. In the second policy, a Game Theory based CAC policy with link adaptation (GTCAC-LA) is proposed. The admission of a new user connection under the GTCAC-LA policy is based on a non-cooperative game that is played between the network (existing user connections) and the new connection. A channel prediction scheme that predicts the rain attenuation on the link in successive intervals of time is also proposed. This determines the current resource allocation for every source at any point in time. The proposed game is played each time a new connection arrives and the strategies adopted by players are based on utility function, which is estimated based on the required capacity and the actual resources allocated. The performance of the CAC policy is investigated for different prediction intervals and the results show that multiple interval prediction scheme shows better performance than the single interval scheme. Performance of the proposed CAC policies indicates their suitability for QoS provisioning for traffic of multimedia connections in future 5G networks

    Queuing Game Theory Based Optimal Routing Scheme for Heterogeneous Users over Space Information Networks

    Get PDF
    An optimal routing scheme in space information networks was presented to balance network loads for heterogeneous users. According to the competition among the nodes, the model was built based on queuing game theory. The virtual routing platform was in charge of resources allocation and route selection. It got user’s gain to decide which node the user joined in. Owning to the existing of heterogeneous users, an optimal admission fee needed to be obtained to avoid congestion. In our model, firstly, the whole welfare of the system was formulated. Then the optimal admission fee was calculated through maximizing the whole welfare. Meanwhile, the average maximum queue length was generated to set the buffer space of the node. At last, a routing factor was introduced into the route algorithm in order that the optimal routing could be selected by heterogeneous users. As a result, the system welfare reaches the maximum

    Radio Spectrum and the Disruptive Clarity OF Ronald Coase.

    Get PDF
    In the Federal Communications Commission, Ronald Coase (1959) exposed deep foundations via normative argument buttressed by astute historical observation. The government controlled scarce frequencies, issuing sharply limited use rights. Spillovers were said to be otherwise endemic. Coase saw that Government limited conflicts by restricting uses; property owners perform an analogous function via the "price system." The government solution was inefficient unless the net benefits of the alternative property regime were lower. Coase augured that the price system would outperform the administrative allocation system. His spectrum auction proposal was mocked by communications policy experts, opposed by industry interests, and ridiculed by policy makers. Hence, it took until July 25, 1994 for FCC license sales to commence. Today, some 73 U.S. auctions have been held, 27,484 licenses sold, and 52.6billionpaid.Thereformisatextbookexampleofeconomicpolicysuccess.WeexamineCoase‘sseminal1959paperontwolevels.First,wenotetheimportanceofitsanalyticalsymmetry,comparingadministrativetomarketmechanismsundertheassumptionofpositivetransactioncosts.Thisfundamentalinsighthashadenormousinfluencewithintheeconomicsprofession,yetisoftenlostincurrentanalyses.Thisanalyticalinsighthaditsbeginninginhisacclaimedearlyarticleonthefirm(Coase1937),andcontinuedintohissubsequenttreatmentofsocialcost(Coase1960).Second,weinvestigatewhyspectrumpolicieshavestoppedwellshortofthepropertyrightsregimethatCoaseadvocated,consideringrent−seekingdynamicsandtheemergenceofnewtheorieschallengingCoase‘spropertyframework.Oneconclusioniseasilyrendered:competitivebiddingisnowthedefaulttoolinwirelesslicenseawards.Byruleofthumb,about52.6 billion paid. The reform is a textbook example of economic policy success. We examine Coase‘s seminal 1959 paper on two levels. First, we note the importance of its analytical symmetry, comparing administrative to market mechanisms under the assumption of positive transaction costs. This fundamental insight has had enormous influence within the economics profession, yet is often lost in current analyses. This analytical insight had its beginning in his acclaimed early article on the firm (Coase 1937), and continued into his subsequent treatment of social cost (Coase 1960). Second, we investigate why spectrum policies have stopped well short of the property rights regime that Coase advocated, considering rent-seeking dynamics and the emergence of new theories challenging Coase‘s property framework. One conclusion is easily rendered: competitive bidding is now the default tool in wireless license awards. By rule of thumb, about 17 billion in U.S. welfare losses have been averted. Not bad for the first 50 years of this, or any, Article appearing in Volume II of the Journal of Law & Economics.

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components

    2011 Annual Report of the Graduate School of Engineering and Management, Air Force Institute of Technology

    Get PDF
    The Graduate School\u27s Annual Report highlights research focus areas, new academic programs, faculty accomplishments and news, and provides top-level sponsor-funded research data and information

    Mobility Solutions for 5G New Radio over Low-Earth Orbit Satellite Networks

    Get PDF

    Content Caching and Delivery in Heterogeneous Vehicular Networks

    Get PDF
    Connected and automated vehicles (CAVs), which enable information exchange and content delivery in real time, are expected to revolutionize current transportation systems for better driving safety, traffic efficiency, and environmental sustainability. However, the emerging CAV applications such as content delivery pose stringent requirements on latency, throughput, reliability, and global connectivity. The current wireless networks face significant challenges to satisfy the requirements due to scarce radio spectrum resources, inflexibility to dynamic traffic demands, and geographic-constrained fixed infrastructure deployment. To empower multifarious CAV content delivery, heterogeneous vehicular networks (HetVNets), which integrate the terrestrial networks with aerial networks formed by unmanned aerial vehicles (UAVs) and space networks constituting of low Earth orbit (LEO) satellites, can guarantee reliable, flexible, cost-effective, and globally seamless service provisioning. In addition, edge caching is a promising solution to facilitate content delivery by caching popular files in the HetVNet access points (APs) to relieve the backhaul traffic with a lower delivery delay. The main technical issues are: 1) to fully reveal the potential of HetVNets for content delivery performance enhancement, content caching scheme design in HetVNets should jointly consider network characteristics, vehicle mobility patterns, content popularity, and APs’ caching capacities; 2) to fully exploit the controllable mobility and agility of UAVs to support dynamic vehicular content demands, the caching scheme and trajectory design for UAVs should be jointly optimized, which has not been well addressed due to their intricate inter-coupling relationships; and 3) for caching-based content delivery in HetVNets, a cooperative content delivery scheme should be designed to enable the cooperation among different network segments with ingenious utilization of heterogeneous network resources. In this thesis, we design the content caching and delivery schemes in the caching-enabled HetVNet to address the three technical issues. First, we study the content caching in HetVNets with fixed terrestrial APs including cellular base stations (CBSs), Wi-Fi roadside units (RSUs), and TV white space (TVWS) stations. To characterize the intermittent network connection caused by limited network coverage and high vehicle mobility, we establish an on-off model with service interruptions to describe the vehicular content delivery process. Content coding then is leveraged to resist the impact of unstable network connections and enhance caching efficiency. By jointly considering file characteristics and network conditions, the content placement is formulated as an integer linear programming (ILP) problem. Adopting the idea of the student admission model, the ILP problem is then transformed into a many-to-one matching problem between content files and HetVNet APs and solved by our proposed stable-matching-based caching scheme. Simulation results demonstrate that the proposed scheme can achieve near-optimal performances in terms of delivery delay and offloading ratio with a low complexity. Second, UAV-aided caching is considered to assist vehicular content delivery in aerial-ground vehicular networks (AGVN) and a joint caching and trajectory optimization (JCTO) problem is investigated to jointly optimize content caching, content delivery, and UAV trajectory. To enable real-time decision-making in highly dynamic vehicular networks, we propose a deep supervised learning scheme to solve the JCTO problem. Specifically, we first devise a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline. With a given content caching policy, we design a time-based graph decomposition method to jointly optimize content delivery and UAV trajectory, with which we then leverage the particle swarm optimization algorithm to optimize the content caching. We then design a deep supervised learning architecture of the convolutional neural network (CNN) to make online decisions. With the CNN-based model, a function mapping the input network information to output decisions can be intelligently learnt to make timely inferences. Extensive trace-driven experiments are conducted to demonstrate the efficiency of CBTL in solving the JCTO problem and the superior learning performance with the CNN-based model. Third, we investigate caching-assisted cooperative content delivery in space-air-ground integrated vehicular networks (SAGVNs), where vehicular content requests can be cooperatively served by multiple APs in space, aerial, and terrestrial networks. In specific, a joint optimization problem of vehicle-to-AP association, bandwidth allocation, and content delivery ratio, referred to as the ABC problem, is formulated to minimize the overall content delivery delay while satisfying vehicular quality-of-service (QoS) requirements. To address the tightly-coupled optimization variables, we propose a load- and mobility-aware ABC (LMA-ABC) scheme to solve the joint optimization problem as follows. We first decompose the ABC problem to optimize the content delivery ratio. Then the impact of bandwidth allocation on the achievable delay performance is analyzed, and an effect of diminishing delay performance gain is revealed. Based on the analysis results, the LMA-ABC scheme is designed with the consideration of user fairness, load balancing, and vehicle mobility. Simulation results demonstrate that the proposed LMA-ABC scheme can significantly reduce the cooperative content delivery delay compared to the benchmark schemes. In summary, we have investigated the content caching in terrestrial networks with fixed APs, joint caching and trajectory optimization in the AGVN, and caching-assisted cooperative content delivery in the SAGVN. The proposed schemes and theoretical results should provide useful guidelines for future research in the caching scheme design and efficient utilization of network resources in caching-enabled heterogeneous wireless networks

    A Methodological Framework for Parametric Combat Analysis

    Get PDF
    This work presents a taxonomic structure for understanding the tension between certain factors of stability for game-theoretic outcomes such as Nash optimality, Pareto optimality, and balance optimality and then applies such game-theoretic concepts to the advancement of strategic thought on spacepower. This work successfully adapts and applies combat modeling theory to the evaluation of cislunar space conflict. This work provides evidence that the reliability characteristics of small spacecraft share similarities to the reliability characteristics of large spacecraft. Using these novel foundational concepts, this dissertation develops and presents a parametric methodological framework capable of analyzing the efficacy of heterogeneous force compositions in the context of space warfare. This framework is shown to be capable of predicting a stochastic distribution of numerical outcomes associated with various modes of conflict and parameter values. Furthermore, this work demonstrates a general alignment in results between the game-theoretic concepts of the framework and Media Interaction Warfare Theory in terms of evaluating force efficacy, providing strong evidence for the validity of the methodological framework presented in this dissertation
    • …
    corecore