233 research outputs found

    Engineering Principles Of Photosystems And Their Practical Application As Long-Lived Charge Separation In Maquettes

    Get PDF
    Light-activated electron transfer reactions between cofactors embedded in proteins serve as the central mechanism underlying numerous biological processes essential to the survival and prosperity of most organisms on this planet. These processes range from navigation, to DNA repair, to metabolism, and to solar energy conversion. The proper functioning of these processes relies on the creation of a charge-separated states lasting for a necessary length of time, from tens of nanoseconds to hundreds of milliseconds, by the arrays of cofactors in photosystems. In spite of decades of experiments and theoretical frameworks providing detailed and extensive description of the behavior of the photosystems, coherent and systematic understanding is lacking regarding the underlying structural and chemical engineering principles that govern the performance of charge-separation in photosystems, evaluated by the fraction of the input energy made available by the photosystem for its intended function. This thesis aims to establish a set of engineering principles of natural and man-made photosystems based on the fundamental theories of electron transfer and the biophysical and biochemical constraints imposed by the protein environment, and then to apply these engineering principles to design and construct man-made photosystems that can excel in charge-separation while incurring minimal cost in their construction. Using the fundamental theories of electron transfer, this thesis develops an efficient computational algorithm that returns a set of guidelines for engineering optimal light-driven charge-separation in cofactor-based photosystems. This thesis then examines the validity of these guidelines in natural photosystems, discovering significant editing and updating of these guidelines imposed by the biological environment in which photosystems are engineered by nature. This thesis then organizes the two layers of engineering principles into a concise set of rules and demonstrates that they can be applied as guidelines to the practical construction of highly efficient man-made photosystems. To test these engineering guidelines in practice, the first ever donor-pigment-acceptor triad is constructed in a maquette and successfully separates charges stably for \u3e300ms, establishing the world record in a triad. Finally, this work looks ahead to the engineering of the prescribed optimal tetrads in maquettes, identifying what’s in place and what challenges yet remain

    Pre-mRNA Splicing: An Evolutionary Computational Journey from Ribozymes to Spliceosome

    Get PDF
    The intron\u2013exon organization of the genes is nowadays taken for granted and constitutes a fully established theory. DNA protein-coding sequences (exons) are not contiguous but rather separated by silent intervening fragments (introns), which must be removed in a process called pre-mRNA splicing. However, this fragmented composition of the eukaryotic genome has ancient origins. It appears that, during the initial stages of eukaryotic evolution, group II introns, i.e. self-splicing catalytic ribozymes, invaded the eukaryotic genome via the endosymbiosis of an alpha-proteobacterium in an archaeal host. At a later time, they split into the inert spliceosomal introns and the catalytically active small nuclear (sn)RNAs, which, together with additional splicing factors, gave rise to the eukaryotic spliceosome. This marked the transition from the autocatalytic splicing, mediated by ribozymes (RNA filaments endowed with an intrinsic catalytic activity) to splicing mediated by a protein-RNA machinery, the spliceosome. In the present thesis, the evolutionary relationship between group II introns and the spliceosome is retraced from a computational perspective by means of classical molecular dynamics simulations (MD), quantum mechanics calculations (QM) and combined quantum-classical simulations (QM/MM). The splicing process of these two different \u2013 but mechanistically related \u2013 large and sophisticated biomolecules is investigated with the aim of deciphering the reactivity and the structural properties from a computational point of view, with a focus on the role played by the Mg2+ ions as splicing cofactors. In Chapter 2, the importance of Mg2+ ions in the RNA biology is introduced. Not only they participate to the catalysis, but also represent essential structural and functional elements for RNA filaments. Moreover, the structural and molecular biology of group II intron ribozymes and the spliceosome machinery are widely discussed with a focus on their evolutionary links. Chapter 3 consists of a brief review of all the computational techniques employed in this thesis, from classical MD to QM and QM/MM simulations and enhanced sampling methods aimed at reconstructing the free energy of a process. Chapter 4 is entirely dedicated to the splicing mechanism promoted by group II intron ribozymes, representing the starting point of the evolutionary journey. In this chapter, a QM/MM study of the molecular mechanism of group II introns first-step hydrolytic splicing is presented, unveiling an RNA-adapted Steitz and Steitz\u2019s two-Mg2+-ion dissociative catalysis which differs from the one observed in protein enzymes. Chapter 5 is focused on Mg2+ ions, which are the natural cofactors of splicing, both in group II introns and in the spliceosome. Mg2+/RNA interplay is here addressed using a group II intron as a prototype of a large RNA molecule binding Mg2+. The performances of five different force fields currently used to describe Mg2+ in MD simulations are benchmarked, showing strengths and drawbacks. Moreover, the non-trivial electronic effects induced by Mg2+ on its ligands, such as charge transfer and polarization, are also characterized using 16 recurrent binding motifs. Overall, the study offers some guidelines on Mg2+ force fields for users and developers. Chapter 6 represents the final stop of the evolutionary journey. Here, an exquisite cryo-EM model of the ILS spliceosomal complex solved at 3.6 \uc5 resolution is used for a long-time scale MD study. This provides precious insights on the main proteins and snRNAs involved in the pre-mRNA splicing in eukaryotes as well as on the catalytic site. Unprecedentedly, the structural and dynamical properties of the spliceosome machinery are investigated at the atomistic level, with a particular emphasis on protein/RNA interplay through the characterization of their principal motions, among which the intron lariat/U2 snRNA helix unwinding

    Molecular Dynamics of the Hammerhead Ribozyme

    Get PDF

    Exploring the Role of Molecular Dynamics Simulations in Most Recent Cancer Research: Insights into Treatment Strategies

    Full text link
    Cancer is a complex disease that is characterized by uncontrolled growth and division of cells. It involves a complex interplay between genetic and environmental factors that lead to the initiation and progression of tumors. Recent advances in molecular dynamics simulations have revolutionized our understanding of the molecular mechanisms underlying cancer initiation and progression. Molecular dynamics simulations enable researchers to study the behavior of biomolecules at an atomic level, providing insights into the dynamics and interactions of proteins, nucleic acids, and other molecules involved in cancer development. In this review paper, we provide an overview of the latest advances in molecular dynamics simulations of cancer cells. We will discuss the principles of molecular dynamics simulations and their applications in cancer research. We also explore the role of molecular dynamics simulations in understanding the interactions between cancer cells and their microenvironment, including signaling pathways, proteinprotein interactions, and other molecular processes involved in tumor initiation and progression. In addition, we highlight the current challenges and opportunities in this field and discuss the potential for developing more accurate and personalized simulations. Overall, this review paper aims to provide a comprehensive overview of the current state of molecular dynamics simulations in cancer research, with a focus on the molecular mechanisms underlying cancer initiation and progression.Comment: 49 pages, 2 figure

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed
    corecore