708 research outputs found

    Interactions in noncommutative dynamics

    Full text link
    A mathematical notion of interaction is introduced for noncommutative dynamical systems, i.e., for one parameter groups of *-automorphisms of \Cal B(H) endowed with a certain causal structure. With any interaction there is a well-defined "state of the past" and a well-defined "state of the future". We describe the construction of many interactions involving cocycle perturbations of the CAR/CCR flows and show that they are nontrivial. The proof of nontriviality is based on a new inequality, relating the eigenvalue lists of the "past" and "future" states to the norm of a linear functional on a certain C^*-algebra.Comment: 22 pages. Replacement corrects misnumbering of formulas in section 4. No change in mathematical conten

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416

    Invariant means on Boolean inverse monoids

    Get PDF
    The classical theory of invariant means, which plays an important role in the theory of paradoxical decompositions, is based upon what are usually termed `pseudogroups'. Such pseudogroups are in fact concrete examples of the Boolean inverse monoids which give rise to etale topological groupoids under non-commutative Stone duality. We accordingly initiate the theory of invariant means on arbitrary Boolean inverse monoids. Our main theorem is a characterization of when a Boolean inverse monoid admits an invariant mean. This generalizes the classical Tarski alternative proved, for example, by de la Harpe and Skandalis, but using different methods
    corecore