127,441 research outputs found

    Data-driven Localization and Estimation of Disturbance in the Interconnected Power System

    Full text link
    Identifying the location of a disturbance and its magnitude is an important component for stable operation of power systems. We study the problem of localizing and estimating a disturbance in the interconnected power system. We take a model-free approach to this problem by using frequency data from generators. Specifically, we develop a logistic regression based method for localization and a linear regression based method for estimation of the magnitude of disturbance. Our model-free approach does not require the knowledge of system parameters such as inertia constants and topology, and is shown to achieve highly accurate localization and estimation performance even in the presence of measurement noise and missing data

    Delay Estimator and Improved Proportionate Multi-Delay Adaptive Filtering Algorithm

    Get PDF
    This paper pertains to speech and acoustic signal processing, and particularly to a determination of echo path delay and operation of echo cancellers. To cancel long echoes, the number of weights in a conventional adaptive filter must be large. The length of the adaptive filter will directly affect both the degree of accuracy and the convergence speed of the adaptation process. We present a new adaptive structure which is capable to deal with multiple dispersive echo paths. An adaptive filter according to the present invention includes means for storing an impulse response in a memory, the impulse response being indicative of the characteristics of a transmission line. It also includes a delay estimator for detecting ranges of samples within the impulse response having relatively large distribution of echo energy. These ranges of samples are being indicative of echoes on the transmission line. An adaptive filter has a plurality of weighted taps, each of the weighted taps having an associated tap weight value. A tap allocation/control circuit establishes the tap weight values in response to said detecting means so that only taps within the regions of relatively large distributions of echo energy are turned on. Thus, the convergence speed and the degree of estimation in the adaptation process can be improved

    A fast and exact ww-stacking and ww-projection hybrid algorithm for wide-field interferometric imaging

    Get PDF
    The standard wide-field imaging technique, the ww-projection, allows correction for wide-fields of view for non-coplanar radio interferometric arrays. However, calculating exact corrections for each measurement has not been possible due to the amount of computation required at high resolution and with the large number of visibilities from current interferometers. The required accuracy and computational cost of these corrections is one of the largest unsolved challenges facing next generation radio interferometers such as the Square Kilometre Array. We show that the same calculation can be performed with a radially symmetric ww-projection kernel, where we use one dimensional adaptive quadrature to calculate the resulting Hankel transform, decreasing the computation required for kernel generation by several orders of magnitude, whilst preserving the accuracy. We confirm that the radial ww-projection kernel is accurate to approximately 1% by imaging the zero-spacing with an added ww-term. We demonstrate the potential of our radially symmetric ww-projection kernel via sparse image reconstruction, using the software package PURIFY. We develop a distributed ww-stacking and ww-projection hybrid algorithm. We apply this algorithm to individually correct for non-coplanar effects in 17.5 million visibilities over a 2525 by 2525 degree field of view MWA observation for image reconstruction. Such a level of accuracy and scalability is not possible with standard ww-projection kernel generation methods. This demonstrates that we can scale to a large number of measurements with large image sizes whilst still maintaining both speed and accuracy.Comment: 9 Figures, 19 Pages. Accepted to Ap

    Ionospheric gravity wave measurements with the USU dynasonde

    Get PDF
    A method for the measurement of ionospheric Gravity Wave (GW) using the USU Dynasonde is outlined. This method consists of a series of individual procedures, which includes functions for data acquisition, adaptive scaling, polarization discrimination, interpolation and extrapolation, digital filtering, windowing, spectrum analysis, GW detection, and graphics display. Concepts of system theory are applied to treat the ionosphere as a system. An adaptive ionogram scaling method was developed for automatically extracting ionogram echo traces from noisy raw sounding data. The method uses the well known Least Mean Square (LMS) algorithm to form a stochastic optimal estimate of the echo trace which is then used to control a moving window. The window tracks the echo trace, simultaneously eliminating the noise and interference. Experimental results show that the proposed method functions as designed. Case studies which extract GW from ionosonde measurements were carried out using the techniques described. Geophysically significant events were detected and the resultant processed results are illustrated graphically. This method was also developed for real time implementation in mind
    corecore