157 research outputs found

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    Personalized Recommender Systems for Resource-based Learning - Hybrid Graph-based Recommender Systems for Folksonomies

    Get PDF
    As the Web increasingly pervades our everyday lives, we are faced with an overload of information. We often learn on-the-job without a teacher and without didactically prepared learning resources. We not only learn on our own but also collaboratively on social platforms where we discuss issues, exchange information and share knowledge with others. We actively learn with resources we find on the Web such as videos, blogs, forums or wikis. This form of self-regulated learning is called resource-based learning. An ongoing challenge in technology enhanced learning (TEL) and in particular in resource-based learning, is supporting learners in finding learning resources relevant to their current needs and learning goals. In social tagging systems, users collaboratively attach keywords called tags to resources thereby forming a network-like structure called a folksonomy. Additional semantic information gained for example from activity hierarchies or semantic tags, form an extended folksonomy and provide valuable information about the context of the resources the learner has tagged, the related activities the resources could be relevant for, and the learning task the learner is currently working on. This additional semantic information could be exploited by recommender systems to generate personalized recommendations of learning resources. Thus, the first research goal of this thesis is to develop and evaluate personalized recommender algorithms for a resource-based learning scenario. To this end, the resource-based learning application scenario is analysed, taking an existing learning platform as a concrete example, in order to determine which additional semantic information could be exploited for the recommendation of learning resources. Several new hybrid graph-based recommender approaches are implemented and evaluated. Additional semantic information gained from activities, activity hierarchies, semantic tag types, the semantic relatedness between tags and the context-specific information found in a folksonomy are thereby exploited. The proposed recommender algorithms are evaluated in offline experiments on different datasets representing diverse evaluation scenarios. The evaluation results show that incorporating additional semantic information is advantageous for providing relevant recommendations. The second goal of this thesis is to investigate alternative evaluation approaches for recommender algorithms for resource-based learning. Offline experiments are fast to conduct and easy to repeat, however they face the so called incompleteness problem as datasets are limited to the historical interactions of the users. Thus newly recommended resources, in which the user had not shown an interest in the past, cannot be evaluated. The recommendation of novel and diverse learning resources is however a requirement for TEL and needs to be evaluated. User studies complement offline experiments as the users themselves judge the relevance or novelty of the recommendations. But user studies are expensive to conduct and it is often difficult to recruit a large number of participants. Therefore a gap exists between the fast, easy to repeat offline experiments and the more expensive user studies. Crowdsourcing is an alternative as it offers the advantages of offline experiments, whilst still retaining the advantages of a user-centric evaluation. In this thesis, a crowdsourcing evaluation approach for recommender algorithms for TEL is proposed and a repeated evaluation of one of the proposed recommender algorithms is conducted as a proof-of-concept. The results of both runs of the experiment show that crowdsourcing can be used as an alternative approach to evaluate graph-based recommender algorithms for TEL

    Tagging and Tag Recommendation

    Get PDF
    Tagging has emerged as one of the best ways of associating metadata with objects (e.g., videos, texts) in Web 2.0 applications. Consisting of freely chosen keywords assigned to objects by users, tags represent a simpler, cheaper, and a more natural way of organizing content than a fixed taxonomy with a controlled vocabulary. Moreover, recent studies have demonstrated that among other textual features such as title, description, and user comments, tags are the most effective to support information retrieval (IR) services such as search, automatic classification, and content recommendation. In this context, tag recommendation services aim at assisting users in the tagging process, allowing users to select some of the recommended tags or to come up with new ones. Besides improving user experience, tag recommendation services potentially improve the quality of the generated tags, benefiting IR services that rely on tags as data sources. Besides the obvious benefit of improving the description of the objects, tag recommendation can be directly applied in IR services such as search and query expansion. In this chapter, we will provide the main concepts related to tagging systems, as well as an overview of tag recommendation techniques, dividing them into two stages of the tag recommendation process: (1) the candidate tag extraction and (2) the candidate tag ranking

    Unsupervised learning on social data

    Get PDF

    Social tag relevance learning via ranking-oriented neighbor voting

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Ranking in evolving complex networks

    Get PDF
    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google’s PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes

    Enhancing explainability and scrutability of recommender systems

    Get PDF
    Our increasing reliance on complex algorithms for recommendations calls for models and methods for explainable, scrutable, and trustworthy AI. While explainability is required for understanding the relationships between model inputs and outputs, a scrutable system allows us to modify its behavior as desired. These properties help bridge the gap between our expectations and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with information overload, recommender systems play a crucial role in ïŹltering content (such as products, news, songs, and movies) and shaping a personalized experience for their users. Consequently, there has been a growing demand from the information consumers to receive proper explanations for their personalized recommendations. These explanations aim at helping users understand why certain items are recommended to them and how their previous inputs to the system relate to the generation of such recommendations. Besides, in the event of receiving undesirable content, explanations could possibly contain valuable information as to how the system’s behavior can be modiïŹed accordingly. In this thesis, we present our contributions towards explainability and scrutability of recommender systems: ‱ We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc explanations for the social feeds generated by black-box platforms. These explanations reveal relationships between users’ proïŹles and their feed items and are extracted from the local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score candidate explanations based on their relevance and surprisal. ‱ We propose a method, PRINCE, to facilitate provider-side explainability in graph-based recommender systems that use personalized PageRank at their core. PRINCE explanations are comprehensible for users, because they present subsets of the user’s prior actions responsible for the received recommendations. PRINCE operates in a counterfactual setup and builds on a polynomial-time algorithm for ïŹnding the smallest counterfactual explanations. ‱ We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subsequently the recommendation models by leveraging user feedback on explanations. ELIXIR enables recommender systems to collect user feedback on pairs of recommendations and explanations. The feedback is incorporated into the model by imposing a soft constraint for learning user-speciïŹc item representations. We evaluate all proposed models and methods with real user studies and demonstrate their beneïŹts at achieving explainability and scrutability in recommender systems.Unsere zunehmende AbhĂ€ngigkeit von komplexen Algorithmen fĂŒr maschinelle Empfehlungen erfordert Modelle und Methoden fĂŒr erklĂ€rbare, nachvollziehbare und vertrauenswĂŒrdige KI. Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklĂ€rbar sein. Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen Ă€ndern, muss dessen Entscheidungsprozess nachvollziehbar sein. ErklĂ€rbarkeit und Nachvollziehbarkeit von KI helfen uns dabei, die LĂŒcke zwischen dem von uns erwarteten und dem tatsĂ€chlichen Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu stĂ€rken. Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entscheidende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu ïŹltern und deren Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In- formationskonsumenten Anspruch auf angemessene ErklĂ€rungen fĂŒr deren personalisierte Empfehlungen. Diese ErklĂ€rungen sollen den Benutzern helfen zu verstehen, warum ihnen bestimmte Dinge empfohlen wurden und wie sich ihre frĂŒheren Eingaben in das System auf die Generierung solcher Empfehlungen auswirken. Außerdem können ErklĂ€rungen fĂŒr den Fall, dass unerwĂŒnschte Inhalte empfohlen werden, wertvolle Informationen darĂŒber enthalten, wie das Verhalten des Systems entsprechend geĂ€ndert werden kann. In dieser Dissertation stellen wir unsere BeitrĂ€ge zu ErklĂ€rbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten vor. ‱ Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc ErklĂ€rungen fĂŒr die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet werden können. Diese ErklĂ€rungen zeigen Beziehungen zwischen BenutzerproïŹlen und deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert. FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die ErklĂ€rungen anhand ihrer Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten. ‱ Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von ErklĂ€rungen fĂŒr PageRank-basierte Empfehlungsdienste. PRINCE-ErklĂ€rungen sind fĂŒr Benutzer verstĂ€ndlich, da sie Teilmengen frĂŒherer Nutzerinteraktionen darstellen, die fĂŒr die erhaltenen Empfehlungen verantwortlich sind. PRINCE-ErklĂ€rungen sind somit kausaler Natur und werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um prĂ€zise ErklĂ€rungen zu ïŹnden. ‱ Wir prĂ€sentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit der Empfehlungsmodelle und die QualitĂ€t der Empfehlungen zu verbessern. Mit ELIXIR können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und ErklĂ€rungen sammeln. Das Feedback wird in das Modell einbezogen, indem benutzerspeziïŹscher Einbettungen von Objekten gelernt werden. Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren Nutzen hinsichtlich ErklĂ€rbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten
    • 

    corecore