7,629 research outputs found

    Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales

    Get PDF
    Accurate measurement of rainfall distribution at various spatial and temporal scales is crucial for hydrological modeling and water resources management. In the literature of satellite rainfall estimation, many efforts have been made to calibrate a statistical relationship (including threshold, linear, or nonlinear) between cloud infrared (IR) brightness temperatures and surface rain rates (RR). In this study, an automated neural network for cloud patch-based rainfall estimation, entitled self-organizing nonlinear output (SONO) model, is developed to account for the high variability of cloud-rainfall processes at geostationary scales (i.e., 4 km and every 30 min). Instead of calibrating only one IR-RR function for all clouds the SONO classifies varied cloud patches into different clusters and then searches a nonlinear IR-RR mapping function for each cluster. This designed feature enables SONO to generate various rain rates at a given brightness temperature and variable rain/no-rain IR thresholds for different cloud types, which overcomes the one-to-one mapping limitation of a single statistical IR-RR function for the full spectrum of cloud-rainfall conditions. In addition, the computational and modeling strengths of neural network enable SONO to cope with the nonlinearity of cloud-rainfall relationships by fusing multisource data sets. Evaluated at various temporal and spatial scales, SONO shows improvements of estimation accuracy, both in rain intensity and in detection of rain/no-rain pixels. Further examination of the SONO adaptability demonstrates its potentiality as an operational satellite rainfall estimation system that uses the passive microwave rainfall observations from low-orbiting satellites to adjust the IR-based rainfall estimates at the resolution of geostationary satellites. Copyright 2005 by the American Geophysical Union

    Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    Get PDF
    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Radar and satellite observations of precipitation: space time variability, cross-validation, and fusion

    Get PDF
    2017 Fall.Includes bibliographical references.Rainfall estimation based on satellite measurements has proven to be very useful for various applications. A number of precipitation products at multiple time and space scales have been developed based on satellite observations. For example, the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space-based observations and retrievals. The CMORPH products are derived using infrared (IR) brightness temperature information observed by geostationary satellites and passive microwave-(PMW) based precipitation retrievals from low earth orbit satellites. Although space-based precipitation products provide an excellent tool for regional, local, and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, their accuracy is limited due to restrictions of spatial and temporal sampling and the applied parametric retrieval algorithms, particularly for light precipitation or extreme events such as heavy rain. In contrast, ground-based radar is an excellent tool for quantitative precipitation estimation (QPE) at finer space-time scales compared to satellites. This is especially true after the implementation of dual-polarization upgrades and further enhancement by urban scale X-band radar networks. As a result, ground radars are often critical for local scale rainfall estimation and for enabling forecasters to issue severe weather watches and warnings. Ground-based radars are also used for validation of various space measurements and products. In this study, a new S-band dual-polarization radar rainfall algorithm (DROPS2.0) is developed that can be applied to the National Weather Service (NWS) operational Weather Surveillance Radar-1988 Doppler (WSR-88DP) network. In addition, a real-time high-resolution QPE system is developed for the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Dallas-Fort Worth (DFW) dense radar network, which is deployed for urban hydrometeorological applications via high-resolution observations of the lower atmosphere. The CASA/DFW QPE system is based on the combination of a standard WSR-88DP (i.e., KFWS radar) and a high-resolution dual-polarization X-band radar network. The specific radar rainfall methodologies at Sand X-band frequencies, as well as the fusion methodology merging radar observations at different temporal resolutions are investigated. Comparisons between rainfall products from the DFW radar network and rainfall measurements from rain gauges are conducted for a large number of precipitation events over several years of operation, demonstrating the excellent performance of this urban QPE system. The real-time DFW QPE products are extensively used for flood warning operations and hydrological modelling. The high-resolution DFW QPE products also serve as a reliable dataset for validation of Global Precipitation Measurement (GPM) satellite precipitation products. This study also introduces a machine learning-based data fusion system termed deep multi-layer perceptron (DMLP) to improve satellite-based precipitation estimation through incorporating ground radar-derived rainfall products. In particular, the CMORPH technique is applied first to derive combined PMW-based rainfall retrievals and IR data from multiple satellites. The combined PMW and IR data then serve as input to the proposed DMLP model. The high-quality rainfall products from ground radars are used as targets to train the DMLP model. In this dissertation, the prototype architecture of the DMLP model is detailed. The urban scale application over the DFW metroplex is presented. The DMLP-based rainfall products are evaluated using currently operational CMORPH products and surface rainfall measurements from gauge networks

    Bayesian Analysis of the Impact of Rainfall Data Product on Simulated Slope Failure for North Carolina Locations

    Get PDF
    In the past decades, many different approaches have been developed in the literature to quantify the load-carrying capacity and geotechnical stability (or the factor of safety, Fs) of variably saturated hillslopes. Much of this work has focused on a deterministic characterization of hillslope stability. Yet, simulated Fs values are subject to considerable uncertainty due to our inability to characterize accurately the soil mantles properties (hydraulic, geotechnical, and geomorphologic) and spatiotemporal variability of the moisture content of the hillslope interior. This is particularly true at larger spatial scales. Thus, uncertainty-incorporating analyses of physically based models of rain-induced landslides are rare in the literature. Such landslide modeling is typically conducted at the hillslope scale using gauge-based rainfall forcing data with rather poor spatiotemporal coverage. For regional landslide modeling, the specific advantages and/or disadvantages of gauge-only, radar-merged and satellite-based rainfall products are not clearly established. Here, we compare and evaluate the performance of the Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) model for three different rainfall products using 112 observed landslides in the period between 2004 and 2011 from the North Carolina Geological Survey database. Our study includes the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis Version 7 (TMPA V7), the North American Land Data Assimilation System Phase 2 (NLDAS-2) analysis, and the reference truth Stage IV precipitation. TRIGRS model performance was rather inferior with the use of literature values of the geotechnical parameters and soil hydraulic properties from ROSETTA using soil textural and bulk density data from SSURGO (Soil Survey Geographic database). The performance of TRIGRS improved considerably after Bayesian estimation of the parameters with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm using Stage IV precipitation data. Hereto, we use a likelihood function that combines binary slope failure information from landslide event and null periods using multivariate frequency distribution-based metrics such as the false discovery and false omission rates. Our results demonstrate that the Stage IV-inferred TRIGRS parameter distributions generalize well to TMPA and NLDAS-2 precipitation data, particularly at sites with considerably larger TMPA and NLDAS-2 rainfall amounts during landslide events than null periods. TRIGRS model performance is then rather similar for all three rainfall products. At higher elevations, however, the TMPA and NLDAS-2 precipitation volumes are insufficient and their performance with the Stage IV-derived parameter distributions indicates their inability to accurately characterize hillslope stability
    • …
    corecore