3,037 research outputs found

    A CMOS Spiking Neuron for Dense Memristor-Synapse Connectivity for Brain-Inspired Computing

    Get PDF
    Neuromorphic systems that densely integrate CMOS spiking neurons and nano-scale memristor synapses open a new avenue of brain-inspired computing. Existing silicon neurons have molded neural biophysical dynamics but are incompatible with memristor synapses, or used extra training circuitry thus eliminating much of the density advantages gained by using memristors, or were energy inefficient. Here we describe a novel CMOS spiking leaky integrate-and-fire neuron circuit. Building on a reconfigurable architecture with a single opamp, the described neuron accommodates a large number of memristor synapses, and enables online spike timing dependent plasticity (STDP) learning with optimized power consumption. Simulation results of an 180nm CMOS design showed 97% power efficiency metric when realizing STDP learning in 10,000 memristor synapses with a nominal 1M{\Omega} memristance, and only 13{\mu}A current consumption when integrating input spikes. Therefore, the described CMOS neuron contributes a generalized building block for large-scale brain-inspired neuromorphic systems.Comment: This is a preprint of an article accepted for publication in International Joint Conference on Neural Networks (IJCNN) 201

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Exploiting Device Mismatch in Neuromorphic VLSI Systems to Implement Axonal Delays

    Get PDF
    Sheik S, Chicca E, Indiveri G. Exploiting Device Mismatch in Neuromorphic VLSI Systems to Implement Axonal Delays. Presented at the International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia.Axonal delays are used in neural computation to implement faithful models of biological neural systems, and in spiking neural networks models to solve computationally demanding tasks. While there is an increasing number of software simulations of spiking neural networks that make use of axonal delays, only a small fraction of currently existing hardware neuromorphic systems supports them. In this paper we demonstrate a strategy to implement temporal delays in hardware spiking neural networks distributed across multiple Very Large Scale Integration (VLSI) chips. This is achieved by exploiting the inherent device mismatch present in the analog circuits that implement silicon neurons and synapses inside the chips, and the digital communication infrastructure used to configure the network topology and transmit the spikes across chips. We present an example of a recurrent VLSI spiking neural network that employs axonal delays and demonstrate how the proposed strategy efficiently implements them in hardware

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses and In-Situ Learning

    Get PDF
    Nanoscale resistive memories are expected to fuel dense integration of electronic synapses for large-scale neuromorphic system. To realize such a brain-inspired computing chip, a compact CMOS spiking neuron that performs in-situ learning and computing while driving a large number of resistive synapses is desired. This work presents a novel leaky integrate-and-fire neuron design which implements the dual-mode operation of current integration and synaptic drive, with a single opamp and enables in-situ learning with crossbar resistive synapses. The proposed design was implemented in a 0.18 μ\mum CMOS technology. Measurements show neuron's ability to drive a thousand resistive synapses, and demonstrate an in-situ associative learning. The neuron circuit occupies a small area of 0.01 mm2^2 and has an energy-efficiency of 9.3 pJ//spike//synapse

    Hardware design of LIF with Latency neuron model with memristive STDP synapses

    Full text link
    In this paper, the hardware implementation of a neuromorphic system is presented. This system is composed of a Leaky Integrate-and-Fire with Latency (LIFL) neuron and a Spike-Timing Dependent Plasticity (STDP) synapse. LIFL neuron model allows to encode more information than the common Integrate-and-Fire models, typically considered for neuromorphic implementations. In our system LIFL neuron is implemented using CMOS circuits while memristor is used for the implementation of the STDP synapse. A description of the entire circuit is provided. Finally, the capabilities of the proposed architecture have been evaluated by simulating a motif composed of three neurons and two synapses. The simulation results confirm the validity of the proposed system and its suitability for the design of more complex spiking neural network

    Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition

    Get PDF
    A neuromorphic chip that combines CMOS analog spiking neurons and memristive synapses offers a promising solution to brain-inspired computing, as it can provide massive neural network parallelism and density. Previous hybrid analog CMOS-memristor approaches required extensive CMOS circuitry for training, and thus eliminated most of the density advantages gained by the adoption of memristor synapses. Further, they used different waveforms for pre and post-synaptic spikes that added undesirable circuit overhead. Here we describe a hardware architecture that can feature a large number of memristor synapses to learn real-world patterns. We present a versatile CMOS neuron that combines integrate-and-fire behavior, drives passive memristors and implements competitive learning in a compact circuit module, and enables in-situ plasticity in the memristor synapses. We demonstrate handwritten-digits recognition using the proposed architecture using transistor-level circuit simulations. As the described neuromorphic architecture is homogeneous, it realizes a fundamental building block for large-scale energy-efficient brain-inspired silicon chips that could lead to next-generation cognitive computing.Comment: This is a preprint of an article accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol 5, no. 2, June 201
    corecore